Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76561
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智
dc.contributor.authorHui-Yun Hungen
dc.contributor.author洪慧筠zh_TW
dc.date.accessioned2021-07-10T21:32:57Z-
dc.date.available2021-07-10T21:32:57Z-
dc.date.copyright2017-08-30
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation1. S. Bose, M. Roy and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds”, Trends in Biotechnology, 30 (2012) 546-554.
2. Ratner et al., Biomaterials science: an introduction to materials in medicine, 2nd ed., Elsevier, San Diego, (2004) 765-770.
3. J.B. Park, Biomaterials: an introduction, Plenum Press, New York, (1979) 4-5.
4. K.H. Rateitschak and H.F. Wolf, Color atlas of dental medicine, Thesis Medical Publishers, (1995) 11-24.
5. M.S. Block, J.N. Kent, and L.S. Guerra, Implants in dentistry, W.B. Saunders Company, (1997) 45-62.
6. 闕山璋,“骨科生醫合金及人工關節”,工業材料雜誌,78 (1993) 51-56。
7. Q. Chen, J. A. Roether and A. R. Boccaccini, “Tissue engineering scaffolds from bioactive glasses and composite materials”, Tissue Engineering, 4 (2008) 103-130.
8. B. Moller et al., “A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study”, International Journal of Oral and Maxillofacial Surgery, 41 (2012) 638-645.
9. Y. Liu, J. Lim and S. Teoh, “Review: development of clinically relevant scaffolds for vascularised bone tissue engineering”, Biotechnology Advances, 31 (2013) 688-705.
10. W. Zheng, C. Yan, W. Fan, C. Adam, K. Oloyede and F. Lin, “Preparation of porous tri-calcium phosphate ceramic scaffold for bone tissue engineering”, 1st First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering, Qiqihar,China, (2010) 300-304.
11. M. Niinomi, “Recent metallic materials for biomedical applications”, Metallurgical and Materials Transcactions A, 33 (2002) 477-486.
12. S. Shabalovskaya, “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys”, Bio-Medical Materials and Engineering, 6 (1996) 267-289.
13. J. Ryhanen, Biocompatibility evaluation of nickel-titanium shape memory metal alloy, Ph.D. dissertation, University of Oulu, Department of Surgery, Oulu, Finlandia, 1999.
14. M. Es-Souni, H. F. Brandies, “ Assessing the biocompatibility of NiTi shape memory alloys used for medical applications”, Analytical and Bioanalytical Chemistry, 381 (2005)557-567.
15. Y. Li, C. Yang et al., “New development of ti-based alloys for biomedical applications”, Materials, 7 (2014) 1709-1800.
16. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, “Design and mechanical properties of new β type titanium alloys for implant materials”, Materials Science and Engineering, A243 (1998) 244-249.
17. N. Sharma, T. Raj and K. K. Jangra, “Applications of nickel-titanium alloys”, Journal of Engineering and Technology, 5 (2015) 1-7.
18. B. Askakal, O. Yildirim and H. Gul, “Metallurgical failure analysis of various implant materials used in orthopedic applications”, Journal of Failure Analysis and Prevention, 4 (2004) 17-23.
19. M. B. Nasab and M. R. Hassan, “Metallic biomaterials of knee and hip”, Trends in Biomaterials & Artificial Organs, 24 (2010) 69-82.
20. K. Mediaswanti et al., “A review on bioactive porous metallic biomaterials”, Journal of Biomaterials and Tissue Engineering, 18 (2013) 1-8.
21. M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants”, Progress in Materials science, 54 (2009)397-425.
22. G. Manivasagam, D. Dhinasekaran and A. Rajamanickam, “Biomedical implant: corrosion and its prevention”, Corrosion science, 2 (2010) 40-54.
23. W. J. Buehler and F. E. Wang, “A summary of recent research on the nitinol alloys and their poteintial application in ocean engineering”, Ocean Engineering, 1 (1967) 105-120.
24. T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, Binary alloy phase diagrams, ASM International, 3 (1990) 2875.
25. K. Tamauchi, I. Ohkata, K. Tsuchita and S. Mitazaki, Shape memory and super elastic alloys, Woodhead publishing, (2011) 16-22.
26. A. Wadood, “Brief overvies on nitinal as biomaterial”, Advances in materials science and engineering, (2016)1-9.
27. V. Humbeeck and R. Stalmans, Characteristics of shape memory alloys,Cambridge University Press, Cambridge, (1998) 149-183
28. J. Zijderveld, R. G. Lange and C. A. Verbraak, “La Transformation Martensite des Alliages Titane-Nickel au Voisinage de la Composition e’ Quiatomique”, Mem Sci Rev Met, 63 (1966) 888.
29. D. Lagoudas, Shape memory alloys modeling and engineering applications, Springer, (2008)11-15.
30. Fernandes, D.J., et al., Understanding the shape-memory alloys used in orthodontics. ISRN dentistry, 2011
31. N. Sharma, T. Raj and K. K. Jangra, “Application of nickel-titanium alloy”, Journal of Engineering and Technology, 5 (2015) 1-7.
32. A. Wadood, “Brief overview on nitinol as biomaterial”, Advances in materials science and engineering, (2016) 1-9.
33. F. Auricchio, E. Boatt. M. Conti, Shape memory alloy engineering, Elsevier, (2015)307-341.
34. Francisco Manuel Braz Fernandes, Shape memory alloys - processing, characterization and applications, Intech, (2013) 262-277.
35. J. Ryhanen et al., “ Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures”, Journal of Biomedical Materials Research Part A, 35 (1997) 451-457.
36. C. Lewis and F. Sunderman, “Metal carcinogenic in total joint arthroplasty. animal models”, Clinical Orthopaedics and Related Research, 329 (1996) S264-S268.
37. K. Kasprzak and K. Bialkowski, “Inhibition of antimutagenic enzyme, 8-oxo-dgtpase, by carcinogenic metals”, Journal of Inorganic Biochemistry, 79
(2000) 231-236.
38. M. Pereira, A. Silva, R. Tracana and G. Carvalho, “Toxic effects caused by stainless steel corrosion products on mouse seminiferous cells”, Cytobios, 77 (1994) 73-80.
39. B. Luis and S. Juan, “A study of nickel allergy”, Research and education, 52 (1984) 116-119.
40. K. Takazawa, H. Miyagawa and A. Hariya, “Metal allergy to stainless steel wire after coronary artery bypass grafting”, The Japanese society for Artificial organs, 6 (2003) 71-72.
41. S. Torgersen, G. Moe and R. Jonsson, “Immunocompetent cells adjacent to stainless steel and titanium miniplates and screws”, European Journal of Oral Sciences, 103 (1995) 46-54.
42. J. Black, “Biological performance of materials: fundamentals of biocompatibility”, CRC Press Online, New York, (1999) 28-44.
43. M. D. Pulido and A. R. Parrish, “Metal-induce apoptosis: mechanisms”, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533 (2003)227-241.
44. C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodeau and D. Piron, “Effect of modification of oxide layer on niti stent corrosion resistance”, Journal of Biomedical Materials Research Part A, 43 (1998) 433-440.
45. U. Diebold, “The surface science of titanium dioxide”, Surface science reports, 48 (2003) 53-229.
46. H. Kim, E. Pippel, U. Gosele and M. Knez, “Titania noaostructures fabricated by atomic layer deposition using spherical protein cages”, Languir, 25 (2009) 13284-13289.
47. H. K. Tsou, P. Y. Hsieh, C. J. Chung, C. H. Tang, T. W. Shyr and J. L. He, “Low-temperature deposition of anatase tio2 on medical grade polyetheretherketone to assist osseous integration”, Surface and Coatings Technology, 204 (2009) 1121-1125.
48. J. M. Wu, F. Xiao, S. Hayakawa, K. Tsuru, S. Takemoto and A. Osaka, “Bioactivity of metallic biomaterials with anatase layers deposited in acidic titanium tetrafluoride solution”, Journal of Materials Science, 14 (2003) 1027-1032.
49. A. Michiardi, E. Engel, C. Aparicio, J. A. Plaell, F.J. Gil, “Oxidized NiTi surface enhance differentiation of osteoblast-like cells”, Journal of Biomedical Materials Research Part A, 85 (2008) 10-114.
50. C. Hebing, S. Gabert, M. Pohl and I. Parezanović, “High-temperature corrosion of NiTi shape memory alloys“, Material and engineering technology, 35 (2004) 332-337.
51. S. A. Shabalovskaya et al., “Surface conditions of nitinol wires, tubing and as-cast alloys. The effect of chemical etching, aging in boiling water and heat treatment”, Journal of Biomedical Materials Research, 65B (2003) 193-203
52. H. tian, D. schryvers, D. Liu, Q. Jiang, J. V. Humbeeck, “Stability of Ni in nitinol oxide surfaces”, Acta Biomaterialia, 7 (2011) 892-899.
53. A. Undisz et al., “The effect of heating rate on the surface chemistry of NiTi”, Acta Biomater, 10 (2014) 4919-4923.
54. N. Pinna and M. Knez, Atomic layer deposition of nanostructure materials, wiley-vch, (2016) 23-30.
55. J. Crowell, “Chemical methods of thin film deposition: chemical vapor deposition, atomic layer deposition, and related technologies”, Journal of Vacuum science and technology A, 21 (2008) S88-S95.
56. hang, L. and M. Knez, Atomic layer deposition for biomimicry, Elsevier, (2013) 399-428.
57. H. Kim, “Characteristics and applications of plasma enhanced-atomic layer deposition”, Thin solid films, 519 (2011) 6639-6644.
58. J. Rodríguez-Reyes and A. V. Teplyakov, “Chemistry of organometallic compounds on silicon: the first step in film growth”, Chemistry A European journal, 13 (2007) 9164-9176.
59. Alexander Fridman, Plasma chemistry, Cambridge University Press, Philadelphia, (2008) 484-485.
60. S. Lehti, “ Low temperature plasma assisted atomic layer deposition in nitrogen carrier gas studied by optical emission spectroscopy”, The European physical journal D, 67 (2013) 1-10.
61. A. chaker et al., “ Understanding the mechanism of interfacial reactions during TiO2 layer growth on RuO2 by atomic layer deposition with O2 plasma or H2O as oxygen source”, Journal of applied physics, 120 (2016) 1-8.
62. X. Wu, TiO2 thin film interlayer for organic photovoltaics, the university of Arizona, (2015) 24-19
63. T. KoKubo,H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity”, Biomaterials, 27 (2006) 2907-2915.
64. M. Karthega, V. Raman, N. Rajendran, “Influence of potential on the electrochemical behavior of β titanium alloys in Hank’s solution”, 3 (2007) 1019-1023.
65. S. H. Chang and S. K. Wu, “Effect of cooling rate transformation temperature measurements of Ni50Ti50 alloys by differential scanning calorimetry and dynamic mechanical”, Materials Characterization, 59 (2008) 987-990.
66. Q. Xie et al., “ growth kinetics and crystallization behavior of tio2 films prepared by plasma enhanced atomic layer deposition”, Journal of the electrochemical society, 155 (2008) H688-H692.
67. J. Aarik, A. Aidla, T. Uustare and V. Sammelselg, “Morphology and structure of TiO2 thin film grown by atomic layer deposition”, Journal of Crystal growth, 148 (1995) 268-275.
68. V. Pore, M. Riatla, M. Leskela, T. Saukkonen and M. Jarn, “Explosive crystallization in atomic layer deposited mixed titanium oxides”, Crystal growth and design, 9 (2009) 2974-2978.
69. S. K. Kim, S. H. Eifert, M. Reiners and R. Waser, “Relation between enhancement in growth and thickness-dependent crystallization in ALD TiO2 thin films”, Journal of the electrochemical Society, 158 (2011) D6-D9.
70. U. Diebold and T. E. Madey, “TiO2 by XPS”, Surface Science Spectra, 4 (1998) 227-231
71. J. P. Lee, J. J. Young and M. M. Sung, “Atomic layer deposition of TiO2 thin films on mixed self-assembled monolayer studied as a function of surface free energy”, Advanced functional materials, 11 (2003) 873-876
72. C. Lee et al., “Photocatalytic functional coaings of TiO2 thin films on polymer substrate by plasma enhaced atomic layer deposition”, Applied catalysis B: Environmental, 91 (2009) 628-633.
73. J. C. F. Rodriguez-Reyes and A. V. Teplyakov, “Chemistry of diffusion barrier film formation: Adsorption and dissociation of Tetrakis(dimethylamino) titanium on Si(100)-21”, J. Phys. Chem. C, 111 (2007) 4800-4808.
74. Igor et al., “Atomic layer deposition TiO2 coated porous silicon surface : Structural characterization and morphology features”, Thin solid film, 589 (2015)303-308.
75. P. Andrew, C. Mark, C. Roger and N. S. Mclntyre, “ New interpretations of XPS spectra of nickel metal and oxides”, Surface science, 9 (2006) 1771-1779.
76. E. Henrique et al., “Sol-gel TiO2 thin films sensitized with th mulberry pigment cyaniding”, Materials Research, 10 (2007) 413-417
77. K. Kanomata, P. Pansila,B. Ahmmad, S. Kubota, K. Hirahara and F. Hirose, “Infrared study on room-temperature atomic layer deposition of TiO2 using tetrakis(dimethylamino)titanium and remote-plasma-excited water vapor”, Applied surface science, 308 (2014)328-332.
78. S. Zhuiykov et al., “Wafer-scale fabrication of conformal atomic-layer TiO2 by atomic layer deposition using tetrakis (dimethylamino) titanium and H2O precursors”, Materials and design, 120 (2017) 99-108.
79. B. Sperling, J. Hoang, W. A. Kimes and J. E. Maslar, “Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO2 using tetrakis(dimethylamido)titanium and water”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32 (2014) 1-7.
80. G. D. Tarigh, F. Shemirani, N. Seif, “ Fabrication of a reusable magnetic multi-walled carbon nanotube-TiO2 nanocomposite by electrostatic adsorption: enhanced photodegradation of malachite green”, RSC Advance, 5 (2015) 35070-35079.
81. Y. Kinoshita, F. Hirose, H. Miya, K. Hirahara, Y. Kimura and M. Niwano, “Infared study of tris(dimethylamino)silane adsorption and ozone irradiation on Si (100) surfaces for ALD of SiO2”, Electrochemical and solid-state Letters, 10 (2007) G80-G83.
82. B. B. Burton, A. R. Lavoie and S. M. George, “Tantalum nitride atomic layer deposition using (tert-Butylimido)tris(diethylamido)tantalum and hydrazine”, Journal of the electrochemical society, 155 (2008) D508-D516.
83. J. P. M. Driessen, J. Schoonman and K. F. Jensen, “Infrared spectroscopic study of decomposition of Ti(N(CH3)2)4”, Journal of the electrochemical society, 148 (2001) G178-G184.
84. C. Huang, H. Bai, Y. Huang, S. Liu, S. Ten and Y. Tseng, “Synthesis of neutral SiO2/TiO2 hydrosol and its application as entireflective self-cleaning thin film”, Photoenergy, 2012 (2012) 620764.
85. T. Young, “An essay on the cohesion of fluids”, Philosphical Transactions of the Royal Society London, 95 (1805) 65-87.
86. R.N. Wenzel, “Resistance of solid surfaces to wetting by water”, Industry & Engineering Chemistry, 28 (1936) 988-994.
87. A.B.D. Cassie and S. Baxter, “Wettability of porous surfaces”, Transactions of the Faraday Society, 40 (1944) 546-550.
88. K. Liu, Y. Tian and L. Jiang, “Bio-inspired superoleophobic and smart materials: Design, fabrication, and application”, Progress in Materials Science, 58 (2013) 503-564.
89. J.C. Yu, J. Yu, W. Ho and J. Zhao, “Light-induced super-hydrophilicity and photocatalytic activeity of mesoporous TiO2 thin film”, Journal of photochemistry and photobiology A: Chemistry. 148 (2002)331-339.
90. S. Shabalovskaya, “Surface, corrosion and biocompatibility aspects of nitinol as an implant material”, Bio-Medical Materials and Engineering, 12 (2002) 69-109.
91. S. H. Jen, J. A. Bertrand and S. M. George, “Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition”, Journal of applied physics, 109 (2011) 1-11.
92. 黃政豪,以化學氣相沉積法製備碳鍍層及其在燃料電池金屬雙極板之應用,逢甲大學碩士論文,(2005) 44-46。
93. J. Dauber et al., “Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2 and ZrO2 atomic layer deposition”, Applied materials and interfaces, 9 (2017) 4192-4201.
94. A. Michiardi, C. Aparicio, J. A. Planell and F. J. Gil, “New oxidation treatment of NiTi shape memory alloys to obtain Ni‐free surfaces and to improve biocompatibility”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77 (2006) 249-256.
95. R. Rajaraman, D.E. Rounds, S. Yen and A. Rembaum, “A scanning electron microscope study of cell adhesion and spreading in vitro”, Experimental Cell Research, 88 (1974) 327-339.
96. G. Orsini, B. Assenza, A. Scarano, M. Piatelli and A. Piattelli, “Surface analysis of machined versus sandblasted and acid-etched titanium implants”, The International Journal of Oral and Maxillofacial Implants, 15 (2000) 779-784.
97. H. Tao et al., “In vitro biocompatibility of titanium-nickel alloy with titanium oxide film by H2O2 oxidation”, Transactions of Nonferrous Metals Society of China, 17 (2007) 553-557
98. N. J. Hallab et al., “Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts”, Journal of Biomedical Materials Research, 60 (2002) 420-433
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76561-
dc.description.abstract鎳鈦形狀記憶合金(Nickel-titanium shape memory alloys)具有優異的形狀記憶效應、超彈性效應、耐疲勞的特性與生物相容性等特性,而被廣泛使用於生醫用途中,如:心血管支架、微創手術中引導絲、結石移除器、人工心臟瓣膜與齒列矯正線等。然而鎳鈦合金在生理環境中,易受到腐蝕而有鎳離子溶出之問題,其鎳離子之溶出易對人體造成過敏、毒性與致癌性,而有健康上之疑慮。現今許多研究著重於鎳鈦合金上之表面改質,以阻擋鎳離子溶出,進而提升生醫植入材之生物相容性,增加植入材之穩定性,但傳統薄膜製程之階梯包覆性差與膜層厚度過厚,而侷限了鎳鈦合金之形狀記憶效應與超彈性效應之應用。故本研究利用原子層沉積技術(Atomic Layer Deposition, ALD)於鎳鈦形狀記憶合金上施鍍奈米尺度之氧化鈦(Titanium dioxide, TiO2)膜層,以探討所能承受之應變量與生物相容性。
本研究中使用電漿增強型原子層沉積技術(Plasma-enhanced atomic layer deposition, PE-ALD)以沉積氧化鈦膜層於鎳鈦形狀記憶合金上,並且比較不同循環次數下之膜層性質,膜層評估方法包括:顯微結構觀察、親疏水性、彎曲測試、抗腐蝕性測試、鎳離子溶出檢測與骨細胞相容性,以探討原子層沉積技術沉積氧化鈦膜層於鎳鈦形狀記憶合金上之可行性。
研究結果顯示,利用原子層沉積技術施鍍於鎳鈦合金上之氧化鈦膜層,經橫截面觀察可發現到,氧化鈦膜層為均勻性佳且與基材間貼覆性良好;施鍍氧化鈦之膜層相較基材疏水,其接觸角並不會隨著膜層厚度而有些微增加的趨勢;隨著沉積膜層厚度越厚,膜層之抗腐蝕能力與鎳阻擋效率皆有提升;體外試驗中,氧化鈦膜層相較基材不具細胞毒性並且可提供細胞相容性,因此利用原子層沉積技術施鍍氧化鈦膜層可增加鎳鈦植入材的生物相容性。
zh_TW
dc.description.abstractNiTi shape memory alloys (SMAs) have been widely applied in biomedical fields due to their excellent shape memory effect, pseudoelasticity, fatigue performance and biomedical properties, such as the cardiovascular stent, guide wire, stone extractors use in the cystic duct, artificial heart valve and orthodontic wire. However, NiTi alloys would release out the Ni ion in the physiological environment during corrosion and might induce the serious problems of allergic reaction, poisoning and causing cancer. Therefore, surface modification is employed to decrease the Ni ion release of NiTi alloy and make it more biocompatible, thereby improving its long-term stability. The general thin film deposition techniques are poor in step coverage and are too thick in film thickness. The thick coating couldn’t bear the large strain, so the shape memory effect and/or the pseudoelasticity of NiTi alloys would be limited due to the thick coating. In this research, the atomic layer deposition (ALD) process was applied to deposit the titanium dioxide (TiO2) with different nano-scale thickness on the NiTi substrates, and then the strain-bearing ability and the biocompatibility of ALD-TiO2 were analyzed.
In this study, the plasma enhanced-atomic layer deposition process was applied to deposit titanium dioxide on the NiTi SMAs surfaces and the film properties with deposition of 50, 100, 200 cycles were compared. Several methods have been used to evaluate the properties of ALD films, including the microstructure observation, water contact angle, bending test, corrosion resistance, the nickel release and the biocompatibility in vitro.
The experimental results show the ALD-TiO2 films are uniform and the interfaces between the ALD-TiO2 films and NiTi substrates fit very well. The coating films are more hydrophobic than the NiTi substrates. The water contact angles of ALD-TiO2 films only change slightly as the deposition cycles increases. The ALD-TiO2 films can effectively inhibit the Ni release from NiTi matrix. Meanwhile, NiTi SMAs with ALD-TiO2 films can exhibit better corrosion resistance in simulate body fluid than the bare NiTi SMAs. In Vitro, the ALD-TiO2 films do not exhibit any toxicity. These results indicate that the biocompatibility of the NiTi SMAs can be effectively improved by TiO2 films deposited by ALD technique.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:32:57Z (GMT). No. of bitstreams: 1
ntu-106-R04527028-1.pdf: 10699832 bytes, checksum: 9bc46f582cb4a2106bfddaa15136c36e (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 簡介與研究動機 1
第二章 基本性質及文獻回顧 2
2.1 生醫植入材 2
2.1.1生醫植入材之性質 3
2.1.2 生醫植入材之種類 4
2.1.3 金屬生醫植入材之比較 5
2.2 鎳鈦形狀記憶合金 8
2.2.1 鎳鈦合金之基本特性 8
2.2.2 形狀記憶效應與超彈性效應 11
2.2.3 鎳鈦形狀記憶合金之生醫方面應用 13
2.3 鎳鈦合金之表面改質 15
2.3.1 鎳離子溶出對人體之影響 15
2.3.2 表面改質技術 16
2.4 原子層沉積技術 19
2.4.1 電漿增強型原子層沉積技術 19
2.4.2 二氧化鈦薄膜之成長機制 21
第三章 實驗方法與步驟 23
3.1 實驗流程 23
3.2 試片準備及前處理 24
3.3 原子層沉積系統及鍍膜參數 24
3.4 鎳鈦合金基材微觀組織觀察 25
3.4.1 化學成分分析 25
3.4.2 相變化溫度分析 26
3.4.3 晶體結構分析 27
3.5二氧化鈦膜層微觀組織觀察 27
3.5.1 膜層厚度分析 27
3.5.2 微觀形貌觀察 27
3.5.3 表面粗糙度分析 28
3.5.4 膜層成分分析 28
3.5.5 親疏水性分析 29
3.5.6 彎曲測試 29
3.5.7 抗腐蝕性測試 30
3.6 鎳離子溶出檢測 31
3.7體外試驗 31
3.7.1骨母細胞貼附試驗 32
3.7.2骨母細胞增生試驗 33
3.7.3骨母細胞毒性試驗 33
第四章 結果與討論 34
4.1 鎳鈦合金基材之分析結果 34
4.1.1鎳鈦合金基材化學成分 34
4.1.2 鎳鈦合金基材相變化溫度 35
4.1.3 鎳鈦合金基材晶體結構 37
4.2 原子沉積技術製備二氧化鈦鍍製於鎳鈦合金之薄膜分析結果 39
4.2.1 NiTi/TiO2之膜層厚度量測結果 39
4.2.2 NiTi/TiO2之膜層截面形貌 40
4.2.3 NiTi/TiO2 表面粗糙度分析結果 43
4.2.4 NiTi/TiO2之化學組態分析結果 45
4.2.5 NiTi/TiO2之官能基分析結果 51
4.2.6 NiTi/TiO2之親疏水性分析結果 53
4.2.7 NiTi/TiO2之彎曲測試結果 56
4.2.8 NiTi/TiO2之抗腐蝕性測試結果 59
4.3 NiTi/TiO2之鎳離子溶出檢測 62
4.4原子沉積技術製備二氧化鈦鍍製於鎳鈦合金之體外試驗結果 64
4.4.1 Ni50Ti50/TiO2之骨母細胞貼附能力結果 64
4.4.2 Ni50Ti50/TiO2之骨母細胞增生能力結果 66
4.4.3 Ni50Ti50/TiO2之骨母細胞毒性結果 67
第五章 結論 68
參考文獻 70
dc.language.isozh-TW
dc.title原子層沉積技術披覆二氧化鈦薄膜於鎳鈦形狀記憶合金生醫植入材之研究zh_TW
dc.titleAtomic Layer Deposited TiO2 on the NiTi Shape Memory Alloys for Biomedical Applicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳錫侃,林昆明,陳敏璋,張世航
dc.subject.keyword鎳鈦形狀記憶合金,原子層沉積技術,二氧化鈦,鎳離子溶出,生物相容性,zh_TW
dc.subject.keywordNiTi shape memory alloy,Atomic layer deposition,Titanium dioxide,Nickel release,Biocompatibility,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201702108
dc.rights.note未授權
dc.date.accepted2017-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04527028-1.pdf
  目前未授權公開取用
10.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved