Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯文祥
dc.contributor.authorChih-Cheng Chenen
dc.contributor.author陳志成zh_TW
dc.date.accessioned2021-07-09T15:53:08Z-
dc.date.available2025-02-17
dc.date.copyright2020-02-17
dc.date.issued2020
dc.date.submitted2020-02-07
dc.identifier.citation1. 大愛全紀錄,2011,廚餘桶的秘密。
2. 中華土壤肥料學會,2001,肥料要覽。
3. 台北縣環境保護局,2006,廚餘回收再利用執行成效專案報告。
4. 行政院環境保護署,2003,中華民國環境保護統計年報。
5. 行政院環境保護署編印,2004,全國廚餘回收執行現況。
6. 行政院環境保護署,2006,廚餘回收再利用。
7. 行政院環境保護署,2018,廚餘回收再利用操作管理參考手冊。
8. 邱梅玲,2007,三種不同製成的廚餘堆肥之成分與養分釋出特性研究。國立中興大學土壤環境科學系碩士論文。
9. 林鴻淇,1994,堆肥材料,堆肥化過程與堆肥品質。
10. 林子傑、周楚洋,2005,廚餘堆肥控制策略之探討。農業機械學刊, 14(4): 37-53。
11. 柯光瑞,2011「耐高溫油脂分解微生物於廚餘堆肥化之應用及其堆肥之成熟度評估」,博士論文,國立臺灣大學生物資源暨農學院農業化學系。
12. 洪明龍,2000,家庭廚餘與下水污泥共同堆肥之資源化研究,國立臺灣大學環境工程學研究所碩士論文。
13. 吳正宗,2008,「廚餘堆肥化操作模式及腐熟度指標之評估」,博士論文,國立中興大學土壤環境科學系。
14. 留啟民,2002,「臺灣地區廚餘資源化之經濟效益分析與可行性分析」,碩士論文,國立高雄師範大學環境教育研究所。
15. 陳仁炫,2006,有機質肥料檢驗法,pp.112-128。肥料要覽。中華土壤肥料學會。
16. 張文英,2001,「臺灣地區廚餘資源化之經濟效益分析與可行性分析」,碩士論文,國立高雄師範大學環境教育研究所。
17. 經濟部工業局,2005,堆肥技術與設備手冊及案例彙編。
18. 楊萬發、馬鴻文、楊盛行、鄭正勇、陳文卿、洪明龍,2002,「廚餘及堆肥成品中有害成分調查、肥力及土壤列管評估計畫」暨「廚餘資源化設施、產品品質標準建制及市場開發近、中程策略規劃」,臺北市政府環境保護局。
19. 黃裕銘、吳正宗,1999,禽畜糞堆肥成分檢驗方法與實習操作。88 年度全省禽畜糞堆肥場堆肥成分分析檢驗及處理技術手冊。中興大學土壤調查試驗中心。P. 5-15。
20. 蔡坤蒼,2005,「台灣家戶有機關廢物堆肥化處理之政策研究」,國立東華大學自然資源管理研究所碩士論文。
21. 蔡宜峰,1995,有機質肥料製作及肥效評估之研究。國立中興大學土壤學研究所博士論文。
22. 蔡宜峰,廚餘堆肥化技術極利用模式,台中區農業改良場。
23. 賴朝明、劉桂龍,2005,酵素活性作為廢棄物堆肥成熟度之指標。
24. 賴朝明、柯光瑞,2009,台灣利用廚餘發電及節能潛力之評估。第二屆城市環境科學與技術研討會暨兩岸四地生態與環境研討會論文摘要集,第40頁。中國科學院城市環境研究所及廈門市科學技術局主辦「第二屆城市環境科學與技術研討會暨兩岸四地生態與環境研討會」,2009年11月28日-12月1日,廈門,中國。
25. 簡宣裕,2001,堆肥品質判定。肥料要覽。增訂三版。中華土壤肥料學會印行。P. 85-90。
26. 韓磊,李銳,朱會利,2011,基於BP神經網絡的土壤養分綜合評價模型,農業機械學報第42卷第7期。
27. Ait Baddi, G.A., J.A. Alburquerque, J. Gonzalvez, J. Cegarra, and M. Hafidi. 2004. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation, 54: 39-44.
28. Aparna, C., P. Saritha, V. Himabindu, and Y. Anjaneyulu. 2007. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments. Waste Management, doi:10.1016/j.wasman.2007.07.008.
29. Benitez, E., R. Nogales, C. Elvira, G. Masciandaro, and B. Ceccanti. 1999. Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetide. Bioresour. Technol. 67:297-303.
30. Benito, M., A. Masaguer, A. Moliner, N. Arrigo, R. M. Palma, and D. Effron. 2005a. Evaluation of maturity and stability of pruning waste compost and their effect on carbon and nitrogen mineralization in soil. Soil Sci. 170:360-370.
31. Benito, M., A. Masaguer, A. Moliner, C. G. Cogger, and A. I. Bary. 2005b. comparison of a gas detection tubes test with the traditional alkaline trap method to evaluate compost stability. Biol. Fertil. Soils 41:447-450.
32. Bernal, M.P., C. Paredes, M.A. Sanchez-Monedero, and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes.
Bioresource Technology, 63: 91-99.
33. Cáceres, R., X. Flotats, and O. Mará. 2006. Changes in the chemical and physicochemical properties of the solid fraction of cattle slurry during composting using different strategies. Waste Manag. 26:1081-1091.
34. Chanyasak, V, M. Hirai, and H. Kubota. 1982. Changes of chemical components and nitrogen transformation in water extracts during composting of garbage. J. Ferment. Technol. 60: 439-446.
35. Chikae, M., R. Ikeda, K. Kerman, Y. Morita, and E. Tamiya. 2006. Estimation of maturity of compost from food waste and agro-residues by multiple regression analysis. Bioresour. Technol. 97:1979-1985.
36. Day, M., and K. Shaw. 2001. Biological, chemical, and physical processes of composting. Chapter 2. In P. J. Stoffella and B. A. Kahn (ed.) Compost utilization in horticultural cropping systems. CRC press, Boca Raton, Florida, USA.
37. Dimambro, M.E., R.D. Lillywhite, and C.R. Rahn. 2007. Thephysical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Science & Utilization 15: 243-252.
38. Dinel, H., M. Schnitzer, and S. Dumontet. 1996a. Compost maturity: extractable lipids as indicators of organic matter stability. Compost Science & Utilization 4: 6-12.
39. Dinel, H., M. Schnitzer, and S. Dumontet. 1996b. Compost maturity: chemical characteristics of extractable lipids. Compost Science & Utilization 4: 16-25.
40. Eghball, B., J.F. Power, J.E. Gilley and J.W. Doran. 1997. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J. Environ. Oual. 26: 189-193.
41. Epstein, E. 1997. The science of composting. Technomic publishing Co., Inc., Pennsyvania. USA.
42. Estrada, J., J. Sana, R. M. Cequiel, and R. Cruanas. 1987. Application of a new method for CEC determination as a compost maturity index. pp. 334-340. In M. de Bertoldi et al. (ed.) Compost: Production, quality and use. Elsevier, New York, USA.
43. Fang, M., J. W. C. Wong, G. X. Li, and M. H. Wong. 1998. Changes in biological parameters during co-composting of sewage sludge and coal ash residues Bioresour. Technol. 64:55-61.
44. Garcia, C., T. Hernandez, F. Costa, B. Ceccanti, and G. Masciandaro. 1993. Kinetics of phosphatase activity in organic wastes. Soil Biol. Biochem. 25:561-565.
45. Goyal, S., S. K. Dhull, and K. K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol. 96:1584-1591.
46. Harada, Y., A. Inoko, M. Tadaki, and T. Izawa. 1981. Maturing process of city refuse compost during piling. Soil Sci. Plant Nutr. 27:357-364.
47. Haug, R. T. 1980. Compost Engineering, Principles and Pratic I. Ann arbor Science Publishers Inc/The Butterworth Group, Michigan.
48. Hirai, M. F., A. Katayama, and H. Kubota. 1986. Effect of compost maturity on plant gcolumnth. Biocycle 27:58-61.
49. Iannotti, D. A., M. E. Grebus, B. L. Toth, L. V. Madden, and H. A. J. Hoitink. 1994. Oxygen respirometry to assess stability and maturity of composted municipal soild waste. J. Environ. Qual. 23:1177-1183.
50. Inbar, Y., Y. Hadar, and Y. Chen. 1993. Recycling of cattle manure of composting process and characterization of maturity. J. Environ. Qual. 22:857-863.
51. Insam, H., K. Amor. M. Renner, and C. Crepaz. 1996 Changes in functional abilities of the microbial community during composting of manure. Microbial Ecology 31:77-87.
52. Jouraiphy, A., S. Amir, M.E. Gharous, J.C. Revel and M. Hafidi. 2005. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage waste and green plant waste. International Biodeterioration & Biodegradation 56: 101-108.
53. Jiménez, E.I., and V.P. Garcia. 1989. Evaluation of city refuse compost maturity: a review. Biological wastes, 27:115-142.
54. Ko, H.J., K.Y. Kim, H.T. Kim, C.N. Kim, and M. Umeda. 2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management 28: 813-820.
55. Kissel, J.H., C.L. Herry, and R.B. Harrison. 1992. Potential emissions of volatile and odordous organic compounds from municipal solid waste composting facilities. Biomass and Bioenergy 3: 181-194.
56. Lai, C. M., G. R. Ke, and M. Y. Chung. 2007.Potentials of food wastes for power generation and energy conservation in Twiwan. p.74,In S. S. Yang et al.(eds) 2007 World Renewable Energy. October 30-November 1, 2007, National Twiwan University, Taipei, Twiwan.
57. Lai, C. M., G. R. Ke, and M. Y. Chung. 2007.Potentials of food wastes for power
generation and energy conservation in Twiwan. Renew. Energ. 34: 1913-1915.
58. Mathur, S.P., G. Owen, H. Dinel, and M. Schnitzer.1993. Determination of compost biomaturity. I. Literature review. Biological Agriculture and Horticulture 10: 65-85.
59. Mathur, S. P., J. Y. Daigle, M. Levesque, and H. Dinel. 1986. The feasibility of preparing high quality composts from fish scrap and peat with seaweeds or scrap. Biol. Agric. Horti. 4:27-38.
60. Matteson, G. C., and B. M. Jenkins. 2007. Food and processing residues in California: Resource assessment and potential for power generation. Bioresour. Technol. 98: 3098-3105.
61. Mondini, C., F. Fornasier, and T. Sinicco. 2004. Enzymatic activity as parameter for the characterization of the composting. Soil Biology & Biochemistry 36: 1587-1594.
62. Mondini, C., M. A. Sánchez-Monedero, T. Sinicco, and L. Leita. 2006. Evaluation of ectracted organic carbon and microbial biomass as stability parameters in ligon-cellulosic waste composts. J. Environ. Qual. 35:2313-2320.
63. Nugroho, S. G., and S. Kuwatsuka. 1990. Concurrent observation of several processes of nitrogen metabolism in soil amended with organic materials on ammonification, nitrification, denitrification and N2 fixation under aerobic and anerobic conditions. Soil Sci. Plant Nutr. 36:215-224.
64. Ros, M., C. Garciá, and T. Hernández. 2006. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemiacl and microbial properties. Waste Manag. 26:1108-1118.
65. Saharinen, M. 1998. Evaluation of changes in CEC during composting. Compost Sci. Util. 6:29-37.
66. Sánchez-Monedero, M. A., A. Roig, C. Paredes, and M. P. Bernal. 2001. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of composting mixtures. Bioresour. Technol. 78:301-308.
67. Saviozzi, A., R. Cardelli, R. Levi-Minzi, and R. Riffaldi. 2004. Evolution of biochemical parameters during composting of urban wastes. Compost Sci. Util. 12:153-160.
68. Schaub, S. M., and J. J. Leonard. 1996. Composting: an alternative waste management option for food processing. Trends Food Sci. Technol. 7:263-268.
69. Smith, D. C., and D. C. Hughes, 2001. A simple test to determine cellulolytic activity as indicator of compost maturity. Commun. Soil Sci. Plant Anal. 32:1735-1749.
70. Sugahara, K., Y. Harada, and A. Inoko. 1979. Color change of city refuse during composting process. Soil Sci. Plant Nutri. 25: 197-208.
71. Tabatabai, M. A. 1994. Soil enzyme. Pp.775-833. In R. W. Weaver et al. (ed.) Methds of soil analysis. Part 2. SSSA and ASA, Madison, WI, USA.
72. Tiquia, S. M. 2005. Microbial parameters as indicators of compost maturity. J. Appl. Microbiol. 99:816-828.
73. Tiquia S.M., and N.Y.F. Tam. 1998. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology 65:43-49.
74. Tsai, S.H., C.P. Liu, and S.S. Yang. 2007. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes. Renewable Energy 32:904-915.
75. Yun, Y.S., J.I. Park, M.S. Sun, and J.M. Park. 2000. Treatment of food wastes using slurry-phase decomposition. Bioresource Technol. 73: 21-27.
76. Zmora-Nahum, S., O. Markovitch, J. Tarchizky, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37:2019-2116.
77. Zubillaga, M. S., and R. S. Lavado. 2006. Phytotoxicity of biosolids compost at different degrees of maturity compared to biosolids animal manures. Compost Sci. Util. 14:267-270.
78. Zucconi, F., and M. de Bertoldi. 1987. Compost specifications for the production and characterization of compost from municipal soild waste. pp. 30-50. In M. de Bertoldi et al (ed.) Compost: Production, quality and use. Elsevier, New York, USA.
79. Zucconi, F., F. Forte, A. Monaco, and M. de Bertoldi. 1981. Biological evaluation of compost maturity. Biocycle 22:27-29.
80. 中下游新聞網https://www.newsmarket.com.tw/blog/118986/
81. 谷騰環保網https://read01.com/zh-tw/PR4QKj.html#.Xhx08lUzaHs
82. 喬凱亞有機概念網http://geocarebiotech.com/organic_concept/kitchen-waste-compost/valuable-kitchen-odd-serial
83. 台肥月刊,肥料與植物生長,簡道南,2003 https://www.taifer.com.tw/
84. 認識植物 http://kplant.biodiv.tw/index.htm
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76488-
dc.description.abstract本研究以家庭廚餘再利用,生產固肥、液肥及種植同時進行之多目標功能性及以環保材質等方面設計之三合一家庭廚餘堆肥桶。以生廚餘100%、生廚餘加熟廚餘各50%、熟廚餘100%三個實驗模組,探討廚餘桶堆肥模組是否腐熟完全並找出最佳化模組及使用後減少之廚餘量。結果得知,生廚餘加熟廚餘之堆肥效果最佳,堆肥腐熟度之pH為5.50、EC值為1.41dS/m、種子發芽率97%、種子發芽指數160.1%均達堆肥腐熟度條件。堆肥肥力之氮磷鉀濃度分別為氮74mg/kg提高了8倍、磷105mg/kg提高了17.5倍、鉀199mg/kg提高了12.5倍,肥力與等級皆比原有土壤數據提高。改良土壤效益之氮磷鉀營養鹽濃度及EC值分別比原始土壤提高了,氮3~5倍、磷1.2~2.7倍、鉀3.3~5.2倍、EC值1~7倍。使用此堆肥可使分蔥植物成長高度提高為2倍。
以臺北市內2019年12月之總戶數106萬戶估計,若每戶均能使用三合一廚餘桶,家庭廚餘自家完全再利用,則每月可減少廚餘量約為8150噸。
zh_TW
dc.description.abstractThis study is a three-in-one family kitchen waste composting bucket designed for 1) household food waste reuse, 2) multi-purpose functions including production of solid fertilizer, liquid fertilizer, and planting, and 3) environmentally friendly materials. Based on three experimental modules, 100% raw food waste, 50% raw food waste plus 50% cook, and 100% cook, whether the composting module of food waste barrel was completely decomposed was explored, the optimal module was found out as well as the reduced amount of food waste after use. The results showed that the best composting effect resulted from the combination of raw food waste and cook. The said compost maturity’s pH value was 5.50, EC value was 1.41 dS / m, rate of seed germination was 97%, and index of seed germination was 160.1%, which all met the conditions of compost maturity. The concentrations of nitrogen, phosphor, and potassium in compost were increased 8 times in nitrogen by 74 mg / kg, 17.5 times in phosphor by 105 mg / kg, and 12.5 times in potassium by 199 mg / kg. Fertility and grade were both higher than the data of the original soil. The NPK concentration and EC values of the improved soil were increased compared to the original soil, respectively, 3 to 5 times in nitrogen, 1.2 to 2.7 times in phosphor, 3.3 to 5.2 times in potassium, and 1 to 7 times in EC. The use of this compost can increase the height when planting shallots by a factor of two.
With a total of 1.06 million households in Taipei in December of 2019, if each household can use the 3-in-1 food waste barrel, and if family food waste is fully reused, the amount of food waste can be reduced by about 8,150 tons per month.
en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:53:08Z (GMT). No. of bitstreams: 1
ntu-109-R01622035-1.pdf: 4119549 bytes, checksum: 46ca61ed46033ef8bfd27ca193f08d09 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌…………………………………………………………………… I
中文摘要………………………………………………………….… II
英文摘要………………………………………………………….…. III
目 錄…………………………………………………………….…. IV
圖目錄………………………………………………………….…....... VI
表目錄………………………………………………………….…..…. VIII
第一章 前言……………………………………………………..….... 1
1.1研究背景及動機…………………………………………..…… 1
1.2研究目的……………………………………………………..… 3
1.3研究流程…………………………………..…………………… 3
第二章 文獻回顧…………………………………………………….. 5
2.1廚餘資源化與應用…………………………………..………… 5
   2.1.1何謂廚餘與堆肥………………………………………… 5
    2.1.2國內外廚餘處理方式…………………………………… 8
2.2家庭廚餘堆肥製造方式……………………………………… 10
2.2.1堆肥化原理……………………………………………… 10
2.2.2堆肥控制條件…………………………………………… 11
2.2.3家庭垃圾堆肥化應用模式……………………………… 14
2.2.4各種家庭廚餘解決方案及現有廚餘桶產品比較……… 15
2.3廚餘堆肥成熟度之評估方法………………………….……… 19
2.3.1物理分析………………………………………………… 19
2.3.2化學分析………………………………………………… 20
2.3.3微生物活性分析………………………………………… 23
2.3.4植物分析………………………………………………… 24
2.4土壤肥力…………….......……………………………… 25
2.5三合一廚餘桶研發重點……………………………….……… 27
第三章 材料與方法………………………………………………….. 29
3.1三合一廚餘桶設計……………………………….……….…… 29
3.1.1三合一廚餘桶規格……………………………...…… 29
3.1.2三合一廚餘桶設計圖……………………………...…… 29
3.1.3三合一廚餘桶設計原理…………………………...…… 31
3.2實驗模組……………………………………….……….…… 33
3.2.1實驗流程…………………………………………...…… 33
3.2.2實驗模組設定……………………………….……..…… 35
3.3檢測儀器及材料…………………...………….…….…… 40
3.4分析方法……….………………….……………..………… 43
3.4.1廚餘堆肥腐熟度分析方法………………………...…… 43
3.4.2土壤肥力………………………………….………...…… 47
3.4.3資料整理法………………………………………...…… 48
第四章 結果與討論…………………………………………..…...….. 50
4.1三合一廚餘桶堆肥腐熟度與肥力……….……..……...… 50
4.1.1廚餘堆肥腐熟度…………………………………...…… 50
4.1.2廚餘堆肥肥力……………………………………...…… 55
4.2土壤肥力改良………………………………...……..………. 59
4.3 廚餘桶植物生長…………………………………….………. 65
4.4 三合一廚餘桶最佳模組與操作步驟…………………………. 66
4.4.1三合一廚餘桶最佳模組…………………………...…… 66
4.4.2三合一廚餘桶操作步驟…………………………...…… 70
第五章 結論與建議………………………………………..…..…...... 71
5.1結論…………….……………………………………..…..……. 71
5.2建議…………….……………………………………..……..… 72
參考文獻…………………………………………………………...…… 73
dc.language.isozh-TW
dc.title固肥、液肥、種植三合一家庭廚餘堆肥桶研發zh_TW
dc.titleDevelopment of a kitchen waste compost bucket with triple function of the solid/liquid fertilizer and culture productsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee胡明哲,余化龍
dc.subject.keyword三合一廚餘堆肥桶,廚餘,堆肥,腐熟度,土壤肥力,zh_TW
dc.subject.keyword3-in-1 kitchen waste compost bucket,kitchen waste,compost,maturity,soil fertility,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202000376
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2025-02-17-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-R01622035-1.pdf4.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved