Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/758
標題: 差集生成網路--新穎資料生成
Difference-Seeking Generative Adversarial Network--Unseen Data Generation
作者: Yi-Lin Sung
宋易霖
指導教授: 貝蘇章(Soo-Chang Pei)
關鍵字: 差集學習,生成對抗網路,半監督式學習,強健的深度網路,異常偵測,
Difference-Seeking,Generative Adversarial Network,Semi-Supervised Learning,Robustness of Neural Network,Novelty Detection,
出版年 : 2019
學位: 碩士
摘要: 新穎資料泛指那些不落在訓練資料的分佈中的資料,而他們在某些應用是很重要的,如半監督學習、增強網路的穩定性和異常偵測等。新穎資料通常難以取得,但是如果能夠有演算法能夠產生這些資料並在訓練時使用,那麼將可以大幅增強模型。因此如何產生這些資料是一個常見的研究議題。不同應用所需要的新穎資料往往不太相同,目前針對各種應用也有不同的方法。在這篇論文中,我們提出一個演算法-差集生成對抗網路,能夠產生各種新穎資料。我們發現新穎資料所在的分佈常常是兩個已知分佈的差集,而這兩個已知分佈的資料是比較容易蒐集到的,甚至都可以從訓練資料變化而來。我們將差集對抗網路應用在半監督學習、加強深度網路的穩定性以及異常偵測,實驗結果證明我們的方法是有效的。除此之外,我們也提供理論的證明保證演算法的收歛性。
Unseen data, which are not samples from the distribution of training data and are difficult to collect, have exhibited the importance in many applications (e.g., novelty detection, semi-supervised learning, adversarial training and so on.). In this paper, we introduce a general framework, called Difference-Seeking Generative Adversarial Network (DSGAN), to create various kinds of unseen data. The novelty is to consider the probability density of unseen data distribution to be the difference between those of two distributions p_bar_d and p_d, whose samples are relatively easy to collect. DSGAN can learn the target distribution p_t (or the unseen data distribution) via only the samples from the two distributions p_d and p_bar_d. Under our scenario, p_d is the distribution of seen data and p_bar_d can be obtained from p_d via simple operations, implying that we only need the samples of p_d during training. Three key applications, semi-supervised learning, increasing the robustness of neural network and novelty detection, are taken as case studies to illustrate that DSGAN enables to produce various unseen data. We also provide theoretical analyses about the convergence of DSGAN.
URI: http://tdr.lib.ntu.edu.tw/handle/123456789/758
DOI: 10.6342/NTU201901502
全文授權: 同意授權(全球公開)
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf3.91 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved