
doi:10.6342/NTU201901502

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文
Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

差集生成網路–新穎資料生成
Difference­Seeking Generative Adversarial Network–

Unseen Data Generation

宋易霖

Yi­Lin Sung

指導教授：貝蘇章博士

Advisor: Soo­Chang Pei, Ph.D.

中華民國 108年 5月
May, 2019

Scanned with CamScanner
doi:10.6342/NTU201901502

doi:10.6342/NTU201901502

誌謝

我很感謝在碩士這兩年時光遇到的每個人，讓我發現即使論文投稿

一直失敗，這段旅程還是很充實的。

第一個要感謝的是貝蘇章教授，謝謝你當初願意收一個化工系的學

生進入實驗室，老師耐心的指導使我成長，勤奮不懈的身影是最好的

身教。畢業後我也會抱持著同樣的精神，努力成為一個在科技產業上

有貢獻的人，當然第一步還是希望能投稿成功…祝老師退而不休快樂!

我也要謝謝李宏毅教授，修了老師的兩門課讓我進入深度學習領域

的大門。後來擔任助教的時候很佩服老師對知識的堅持以及對實驗敏

銳的觀察。未來繼續在這條路上希望還能和老師有所交流。

這本論文的完成很大的部份必須歸功於謝松憲學長，除此之外，碩

二每週和學長討論絕對是讓我進步最大的原因。學長讓我了解數學基

礎對研究的重要性，也因此我修了幾門回想起來很痛苦，但收穫良多

的數學課。學長對於研究的想法和知識的細節也讓我非常欽佩。我們

一定要把這個研究成果投稿到 AI的頂會上！

當然也要感謝實驗室的同學以及學弟妹。感謝你們罩我 DSP，不然

後果不堪設想。也謝謝你們包容我這個難熟的人，直到快畢業了才感

覺跟大家變熟，真的有點可惜。未來不知道會不會常見面，但如果需

要我而我有能力的話，我一定大力相挺。

最後要老套的感謝一下我的家人以及女友，謝謝你們一直相信一個

明明不太強的我。我會努力的朝自己的目標邁進，回饋社會也回饋你

們。

…寫於 2019年 7月 15日…

iii

doi:10.6342/NTU201901502

iv

doi:10.6342/NTU201901502

Acknowledgements

I’m glad to thank everyone I met during these two years.

v

doi:10.6342/NTU201901502

vi

doi:10.6342/NTU201901502

摘要

新穎資料泛指那些不落在訓練資料的分佈中的資料，而他們在某些

應用是很重要的，如半監督學習、增強網路的穩定性和異常偵測等。

新穎資料通常難以取得，但是如果能夠有演算法能夠產生這些資料並

在訓練時使用，那麼將可以大幅增強模型。因此如何產生這些資料是

一個常見的研究議題。不同應用所需要的新穎資料往往不太相同，目

前針對各種應用也有不同的方法。在這篇論文中，我們提出一個演算

法­差集生成對抗網路，能夠產生各種新穎資料。我們發現新穎資料所

在的分佈常常是兩個已知分佈的差集，而這兩個已知分佈的資料是比

較容易蒐集到的，甚至都可以從訓練資料變化而來。我們將差集對抗

網路應用在半監督學習、加強深度網路的穩定性以及異常偵測，實驗

結果證明我們的方法是有效的。除此之外，我們也提供理論的證明保

證演算法的收歛性。

關鍵字： 差集學習、生成對抗網路、半監督式學習、強健的深度網

路、異常偵測

vii

doi:10.6342/NTU201901502

viii

doi:10.6342/NTU201901502

Abstract

Unseen data, which are not samples from the distribution of training data

and are difficult to collect, have exhibited the importance in many appli­

cations (e.g., novelty detection, semi­supervised learning, adversarial train­

ing and so on.). In this paper, we introduce a general framework, called

Difference­SeekingGenerativeAdversarialNetwork (DSGAN), to create var­

ious kinds of unseen data. The novelty is to consider the probability density

of unseen data distribution to be the difference between those of two distri­

butions pd̄ and pd, whose samples are relatively easy to collect. DSGAN can

learn the target distribution pt (or the unseen data distribution) via only the

samples from the two distributions pd and pd̄. Under our scenario, pd is the

distribution of seen data and pd̄ can be obtained from pd via simple opera­

tions, implying that we only need the samples of pd during training. Three

key applications, semi­supervised learning, increasing the robustness of neu­

ral network and novelty detection, are taken as case studies to illustrate that

DSGAN enables to produce various unseen data. We also provide theoretical

analyses about the convergence of DSGAN.

Keywords: Difference­Seeking, GenerativeAdversarial Network, Semi­Supervised

Learning, Robustness of Neural Network, Novelty Detection

ix

doi:10.6342/NTU201901502

x

doi:10.6342/NTU201901502

Contents

誌謝 iii

Acknowledgements v

摘要 vii

Abstract ix

1 Introduction 1

2 Backgrounds 5

2.1 Deep Generative Model . 5

2.2 Generative Adversarial Network . 5

2.3 Wasserstein GAN . 6

2.4 Semi­Supervised Learning with GANs 8

2.5 Robust Issue of Neural Networks . 8

2.6 Novelty Detection by Reconstruction Method 8

2.7 Related Works . 8

3 Proposed Method­DSGAN 11

3.1 Formulation . 11

3.2 Case Study on Synthetic Data and MNIST 13

3.2.1 Case Study on Various Unseen Data Generation 13

3.3 Discussions about the objective function of DSGAN 15

3.4 Tricks for Stable Training . 16

xi

doi:10.6342/NTU201901502

3.5 Appendix: More Results for Case Study 17

4 Theoretical Results 21

5 Applications 27

5.1 Semi­Supervised Learning . 27

5.2 Robustness Enhancement of Deep Networks 28

5.3 Novelty Detection . 30

6 Experiments 33

6.1 DSGAN in Semi­Supervised Learning 33

6.1.1 Datasets: MNIST, SVHN, and CIFAR­10 34

6.1.2 Main Results . 35

6.1.3 Appendix: Experimental Details 36

6.2 DSGAN in Robustness Enhancement of Deep Networks 37

6.2.1 Experiments Settings . 40

6.2.2 Main Results . 40

6.2.3 Appendix: Experimental Details 42

6.3 DSGAN in Novelty Detection . 43

6.3.1 Main Results . 44

6.3.2 Experimental Details . 46

7 Conclusions 47

Bibliography 49

xii

doi:10.6342/NTU201901502

List of Figures

1.1 Illustration of the differences between traditional GAN and DSGAN. . . . 3

2.1 The workflow of GAN. (Source: https://medium.freecodecamp.org/an­

intuitive­introduction­to­generative­adversarial­networks­gans­7a2264a81394) 7

3.1 Complement points (in Green) between 2 circles (in Orange). 13

3.2 Boundary points (in Green) among 4 circles (in Orange). 13

3.3 The illustration about generating unseen data in boundary around train­

ing data. First, the convolution of pd and normal distribution makes the

density on boundary be no longer zero. Second, we seek pg such that Eq.

(3.1) holds, where the support set of pg is approximated by the difference

of those between pd̄ and of pd. 14

3.4 Illustration of difference­set seeking in MNIST. 15

3.5 DSGAN learns the difference between two sets. 15

3.6 Demonstrate the influence of α on the synthetic dataset. In this example,

pd is the orange rectangle (bounded by x <= 1, x >= −1, y >= −0.8

and y <= 0.8), and pd̄ is the rectangle which is shifted pd right by 1 unit

(not appear in the figures). We can observe that pg is farther away from pd

(green points) when α increases. When α is 0.5, pg learns perfect differ­

ence between pd̄ and pd. When α is 0.95, pg generates the rightmost points

of pd̄. The contour is the output of the discriminator, the place with higher

score the generator going. Note that the outputs of the discriminator are

not restricted in [0, 1], because we use WGAN’s structure in this experiment. 18

xiii

doi:10.6342/NTU201901502

3.7 Extra 2D results for boundary sample generation. The orange points are

data points, and the green points are generated points. 19

3.8 Difference set generation for CelebA dataset ([1]). pd̄ is 20000 images

from CelebA dataset. In pd̄, 1000 images are humans with glasses while

others are ones without glasses. pd all contains human wearing glasses,

and its size is 19000. In this case, our generator successfully learned to

produce images which are human with glasses. Note that α = 0.95. . . . 20

5.1 Demonstration for the adversarial example. Adding a special noise to the

panda image can change the prediction of the model to “gibbon”. More­

over, the noise on the adversarial example is unperceivable for human. . . 29

6.1 Accuracy of baseline and our models after attacks. Blue line indicates

the first baseline model. Orange, green and red lines denote the second

baseline models with different ranges of uniform noise. Purple, brown

and pink lines indicate our methods. In the legend, the float number (0.01,

0.03 and 0.05) also indicates the variance of noises, and “w1” means that

w in (6.3) is set to 1. “epsilon” means the ℓ2 (or ℓinf) norm between the

original image (pixel values are normalized to a range of [−0.5, 0.5]) and

corresponding adversarial example. 41

6.2 The setting is the same with Fig. 6.3 unless w = 3. 42

6.3 The setting is the same with Fig. 6.3 unless w = 10. 42

6.4 Comparison of the reconstructed results of VAE and our method. Seen

class, which is at the bottom of the images, is car. Other rows are images

from unseen classes. Our method exhibits a relatively larger gap, in terms

of reconstruction error between seen data and unseen data, than VAE. . . 45

xiv

doi:10.6342/NTU201901502

List of Tables

6.1 Semi­supervised learning results on MNIST whether to use the sampling

tricks. 35

6.2 Comparison of semi­supervised learning between our DSGAN and state­

of­the­art methods: CatGAN [2], TripleGAN [3], FM [4], badGAN [5]

and CT­GAN [6]. For a fair comparison, we only consider the GAN­

based methods. ∗ indicates the use of the same architecture of classifier.

† indicates a larger architecture of classifier. ‡ indicates the use of data

augmentation. The results forMNIST are recorded in the number of errors

while the others are in percentage of errors. 36

6.3 Hyperparameters in semi­supervised learning. 36

6.4 Network architectures for semi­supervised learning onMNIST. (GN:Gaus­

sian noise) . 38

6.5 The architectures of generator and discriminator for semi­supervised learn­

ing on SVHN and CIFAR­10. N was set to 128 and 192 for SVHN and

CIFAR­10, respectively. 38

6.6 The architecture of classifiers for semi­supervised learning on SVHN and

CIFAR­10. (GN: Gaussian noise, lReLU(leak rate): LeakyReLU(leak rate)) 39

6.7 The architecture of classifier for robustness enhancement of deep net­

works on CIFAR­10. (lReLU(leak rate): LeakyReLU(leak rate)) 43

xv

doi:10.6342/NTU201901502

6.8 Comparison between ourmethod (VAE+DSGAN) and state­of­the­art meth­

ods: VAE [7], AND [8], DSVDD [9], and OCGAN [10]. The results for

Cifar­10 were recorded in terms of AUC value. The number in the top

row indicates the seen class, where 0: Plain, 1: Car, 2: Bird, 3: Cat, 4:

Deer, 5: Dog, 6: Frog,7: Horse, 8: Ship, 9: Truck. 45

6.9 The architectures of generator and discriminator in DSGAN for novelty

detection. 46

6.10 The architectures of VAE for novelty detection. 46

xvi

doi:10.6342/NTU201901502

Chapter 1

Introduction

Unseen data are not samples from the distribution of training data and are difficult to

collect. It has been demonstrated that the unseen samples can be applied to several ap­

plications. [5] proposed how to create complement data and theoretically showed that

complement data, considered as unseen data, can improve the semi­supervised learning.

In novelty detection, [11] proposed amethod to generate unseen data and used them to train

a anomaly detector. Another related issue is adversarial training [12], where classifiers are

trained to resist against adversarial examples, which are unseen during the training phase.

However, the aforementioned methods only focus on producing specific kind of unseen

data instead of enabling to generate general types of unseen data.

In this paper, we propose a general framework, called DSGAN, to generate a vari­

ety of unseen data. DSGAN is one of the generative approaches. In tradition, generative

approaches, which are usually conducted in an unsupervised learning manner, are de­

veloped for learning data distribution from its samples and thereafter produce novel and

high­dimensional samples, such as synthesized image, from learned distributions [13].

The state­of­the­art approach is so­called Generative Adversarial Networks (GAN) [14].

GAN produces sharp images based on a game­theoretic framework, but can be tricky and

unstable to train due to multiple interacting losses. Specifically, GAN consists of two

functions: generator and discriminator. Both functions are represented as parameterized

neural networks. The discriminator network is trained to classify whether or not inputs

belong to the real data set or fake data set created by the generator. The generator learns to

1

doi:10.6342/NTU201901502

map a sample from a latent space to some distribution to increase the classification errors

of the discriminator.

Nevertheless, if we aim to learn a generator to create unseen data, traditional GAN

requires preparing plenty of training samples of unseen classes for training, leading to

the contradiction with the definition of unseen data. This fact motivates us to present

DSGAN, which can generate unseen data by taking seen data as training samples (see

Fig. 1.1, which illustrates the difference between GAN and DSGAN). The key idea is

to consider the distribution of unseen data as the difference between two distributions, in

which both are relatively easy to obtain. For example, out­of­distribution examples in the

MNIST dataset, from another point of view, are found to belong to the difference between

the set of examples in MNIST and the universal set. It should be noted that the target

distribution is equal to the training data distribution in traditional GAN; however, these

two distributions, target distribution and training data distribution, are considered different

in DSGAN.

In this paper, we make the following contributions:

(1) We proposeDSGAN to generate any unseen data only if the density of target (unseen

data) distribution is the difference between those of any two distributions, pd̄ and pd.

By contrast, traditional GAN fails to learn the difference between two distributions.

(2) We show that DSGAN possesses the flexibility to learn different target (unseen

data) distributions in three key applications, semi­supervised learning, increasing

the robustness of neural network and novelty detection. Specifically, for novelty

detection, DSGAN can produce boundary points around seen data because this kind

of unseen data is easily misclassified. DSGAN also generates boundary samples to

increase the robustness of neural network, but the distance measured in ℓinf norm.

For semi­supervised learning, unseen data are the linear combination of any labeled

data and unlabeled data, excluding labeled and unlabeled data themselves1.

(3) Our theoretical analysis shows that, with enough capacity of the generator and the
1The linear combination of any labeled data and unlabeled data probably belongs to the set of seen data

(labeled data and unlabeled data), which contradicts with the definition of unseen data. Thus, the samples
generated by DSGAN should not include seen data themselves.

2

doi:10.6342/NTU201901502

discriminator, the generator can learn the target distribution pt, whose support set is

the difference of support sets between pd̄ and pd, under mild conditions.

Figure 1.1: Illustration of the differences between traditional GAN and DSGAN.

3

doi:10.6342/NTU201901502

4

doi:10.6342/NTU201901502

Chapter 2

Backgrounds

2.1 Deep Generative Model

A deep generative model is to learn the underlying data distribution PX from limited train­

ing data X via neural network. The learned data distribution can be apply to several sce­

narios, e.g. classification problem, representation learning, compressed sensing, etc. One

can view that to learn a generative model is similar to teach machine understanding the

world. Recently, there are some well­known algorithms for deep generative models, in­

cluding Variational Autoencoders (VAE) ([7]), Generative Adversarial Networks (GAN)

([14]), autoregressive models ([15]), and normalizing flow models ([16]). In this thesis, I

focus on studying GANs.

2.2 Generative Adversarial Network

GAN is one of the popular framework in generation in recent years and it is successfully

apply to various applications ([17], [18], [19]). GAN sets up a min­max game between

the generator and discriminator. Generator tries to learn the data distribution to fool the

discriminator while the discriminator learns to distinguish the input coming from the data

distribution or the generator.

To learn the generator, one has to define a prior distribution pz of the input variable

z, and pz is U(0, 1) or N(0, 1) in most of the time. Generator is a differentiable mapping

5

doi:10.6342/NTU201901502

function G with output space G(z; θg). The goal of the generator is to find a optimal

θg to let the distribution of G(z; θg) (that is, pg) equal to the data distribution pX . The

discriminator is define as D(x; θd) that outputs scalar value. D(x) can be viewed as the

probability of that x is from pX . In other words, the discriminator is a binary classifier to

distinguish the input is from pX or pg. The workflow of GAN is demonstrate in Fig. 2.1.

One train D to maximize the probability that assign 1 to the x and 0 to G(z) (or xg).

In the mean while, G is being trained to maximize D(xg). This procedure can be treated

as a min­max game between G and D. More specifically, the objective function of GAN

is

F (G,D) = Ex∼pd [log (D(x))] + Ez∼pz [log (1−D(G(z)))] (2.1)

And one can optimize 2.1 by updating G and D, that is

min
G

max
D

F (G,D) .

Under mild assumptions, optimizing 2.1 equals to minimize the Jensen­Shannon di­

vergence between pX and pg. The global optimum is reached only if pg = pX . The detailed

proof is in [14].

In 2.1, the generator is going to be minimized until the discriminator is at optimal.

However, this training procedure is inefficient. Therefore, [14] claims that the discrim­

inator only need constant multiple times (e.g. 5) updating steps per generator updating

step. [20] points out that use higher learning rate for discriminator also achieve similar

result. With this technique, we can alternatively train G andD each for one iteration, and

it can shorten the training time.

2.3 Wasserstein GAN

It is demonstrated that there are some problems in training GAN: unstable training process,

gradient vanishing problem, mode collapse in generator, etc. Lots of works are trying to

address those issues. [21] proposed the convolutional architectures for both generator and

6

doi:10.6342/NTU201901502

Figure 2.1: The workflow of GAN. (Source: https://medium.freecodecamp.org/an­
intuitive­introduction­to­generative­adversarial­networks­gans­7a2264a81394)

discriminator to stabilize training. [22] define an alternative loss function and the proposed

GAN can not only generate high quality images but also have more stable training process.

[23] mathematically analyze the training dynamics of training GAN. Moreover, they state

that the unstable issues of GAN comes from the objective function. Based on [24], [25]

proposed Wasserstein GAN with a modified objective function,

W (G,D) = Ex∼pd [D (x)]− Ez∼pz [D (G (z))] (2.2)

Same as what we do in training GAN, we update G andD to minimize and maximize

2.2 respectively, that is,

min
G

max
∥D∥L≤1

W (G,D)

where ∥D∥L ≤ 1 denotes that D meets the 1­Lipschitz continuity.

Training WGAN can be viewed as minimizing the Wasserstein distance (Earth­Mover

distance) between pX and pg. WGAN is exhibited to be more stable and it can cover

more modes of the training data. The reason why Wasserstein distance works better than

Jensen­Shannon divergence in training GAN refer to [24] and [25].

In order to let WGAN success, one has to constrain the Lipschitz continuity of the

discriminator. In [25], the author use the weight clipping to enforce the condition. How­

ever, the method may lead some undesired behavior. [26] instead constrain the gradient

norm of the discriminator’s output with respect to its input, and the proposed GAN called

WGAN­GP (GP is the abbreviation of gradient penalty).

7

doi:10.6342/NTU201901502

2.4 Semi­Supervised Learning with GANs

Please refer to Sec. 5.1.

2.5 Robust Issue of Neural Networks

Please refer to Sec. 5.2.

2.6 Novelty Detection by Reconstruction Method

Please refer to Sec. 5.3.

2.7 Related Works

We introduce related works about generating unseen data.

[11] proposed a method to generate samples of unseen classes in the unsupervised

manner via an adversarial learning strategy. But, it requires solving an optimization prob­

lem for each sample, which undoubtedly lead to high computation cost. On the contrary,

DSGAN has the capability to create infinite diverse unseen samples. [27] presented a new

GAN architecture that can learn both distributions of unseen data from part of seen data

and unlabeled data. But, unlabeled data must be a mixture of seen and unseen samples;

DSGAN does not require any unseen data instead. [5] aims to generate complementary

samples (or out­of­distribution samples) but assumes that in­distribution can be estimated

by a pretrained model such as PixelCNN++, which might be difficult and expensive to

train. [28] uses a simple classifier to replace the role of PixelCNN++ in [5] such that the

training is much easier and more suitable. Nevertheless, their method only focuses on

generates unseen data surrounding the low­density area of seen data, but DSGAN is more

flexible to generate different kinds of unseen data (e.g., the linear combination of seen

data described in Sec.6.1). In addition, their method needs the label information of data

while ours is fully unsupervised.

8

doi:10.6342/NTU201901502

Related works about semi­supervised learning and enhancing robustness of neural net­

work are presented in Sec. 5

9

doi:10.6342/NTU201901502

10

doi:10.6342/NTU201901502

Chapter 3

Proposed Method­DSGAN

3.1 Formulation

We denote the generator distribution as pg and training data distribution as pd, both in a

N ­dimensional space. Let pd̄ be the distribution decided by user. For example, pd̄ can be

the convolution of pd and normal distribution. Let pt be the target distribution which the

user is interested in, and it can be expressed as

(1− α)pt(x) + αpd(x) = pd̄(x), (3.1)

where α ∈ [0, 1]. Our method, DSGAN, aims to learn pg such that pg = pt. Note

that if the support set of pd belongs to that of pd̄, then there exists at least an α such that

the equality in (3.1) holds. However, even though the equality does not hold, intuitively,

DSGAN tries to learn pg such that pg(x) ∼
pd̄(x)− αpd(x)

1− α
with the constraint pg(x) ≥ 0.

In other words, the generator is going to output samples located in high­density areas of

pd̄ − αpd. Furthermore, we show that DSGAN can learn pg, whose support set is the

difference between those of pd̄ and pd in Proposition 2.

At first, we formulate the generator and discriminator in GANs. The inputs z of the

generator are drawn from pz (z) in an M ­dimensional space. The generator function

G(z; θg) : RM → RN represents a mapping to data space, where G is a differentiable

function with parameters θg. The discriminator is defined asD (x; θd) : RN → [0, 1] that

11

doi:10.6342/NTU201901502

outputs a single scalar. D (x) can be considered as the probability that x belongs to a class

of real data.

Similar to traditional GAN, we train D to distinguish the real data from the fake data

sampled from G. Meanwhile, G is trained to produce realistic data as possible to mislead

D. But, in DSGAN, the definitions of “real data” and “fake data” are different from those

in traditional GAN. The samples from pd̄ are considered as real but those from the mixture

distribution between pd and pg are considered as fake. The objective function is defined

as follows:

V (G,D) := Ex∼pd̄(x)
[logD(x)] + (1− α)Ez∼pz(z) [log (1−D (G (z)))]+

αEx∼pd(x) [log (1−D(x))] .

(3.2)

We optimize (3.2) through a min­max game between G and D, that is,

min
G

max
D

V (G,D) .

During the training procedure, an iterative approach like traditional GAN is to alternate

between k steps of trainingD and one step of trainingG. In practice, minibatch stochastic

gradient descent via back propagation is used to update θd and θg. In other words, for each

of pg, pd and pd̄, m sample are required for computing gradients, where m is the number

of samples in a minibatch. The training procedure is illustrated in Algorithm 1. DSGAN

suffers from the same drawbacks with traditional GAN (e.g., mode collapse, overfitting,

and strong discriminator) such that the generator gradient vanishes. There are literature

[4, 24, 29] focusing on dealing with the above problems, and such ideas can be readily

combined into DSGAN.

[3] and [30] proposed the similar objective function like (3.2). Their goal is to learn

the conditional distribution of training data. Nevertheless, we aim to learn the target dis­

tribution pt in Eq. (3.1), not the training data distribution.

12

doi:10.6342/NTU201901502

Algorithm 1 The training procedure of DSGAN using minibatch stochastic gradient de­
scent. k is the number of steps applied to discriminator. α is the ratio between pg and pd
in the mixture distribution. We used k = 1 and α = 0.8 in experiments.

01. for number of training iterations do
02. for k steps do
03. Sample minibatch ofm noise samples z(1), ..., z(m) from pg(z).
04. Sample minibatch ofm samples x(1)

d , ..., x
(m)
d from pd(x).

05. Sample minibatch ofm samples x(1)

d̄
, ..., x

(m)

d̄
from pd̄(x).

06. Update the discriminator by ascending its stochastic gradient:

∇θd

[
1

m

m∑
i=1

logD
(
x
(i)
d

)
+ log

(
1−D

(
G
(
z(i)

)))
+ log

(
1−D

(
x
(i)

d̄

))]
07. end for
08. Sample minibatch ofm noise samples z(1), ..., z(m) from pg(z).
09. Update the generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

[
log

(
1−D

(
G
(
z(i)

)))]
10. end for

3.2 Case Study on Synthetic Data and MNIST

3.2.1 Case Study on Various Unseen Data Generation

To get more intuitive understanding about DSGAN, we conduct several case studies on

2D synthetic datasets and MNIST. α = 0.8 in Eq. (3.1) is used.

Figure 3.1: Complement points (in Green)
between 2 circles (in Orange).

Figure 3.2: Boundary points (in Green)
among 4 circles (in Orange).

Complement samples generation Fig. 3.1 illustrates that DSGAN is able to generate

complement samples between 2 circles. Given the density function of the 2 circles as

13

doi:10.6342/NTU201901502

Figure 3.3: The illustration about generating unseen data in boundary around training data.
First, the convolution of pd and normal distribution makes the density on boundary be no
longer zero. Second, we seek pg such that Eq. (3.1) holds, where the support set of pg is
approximated by the difference of those between pd̄ and of pd.

pd, we assign samples drawn from pd̄ as the linear combinations of 2 circles. Then, by

applying DSGAN, we achieve our goal to generate complement samples. In fact, this

kind of unseen data is used in semi­supervised learning.

Boundary samples generation Fig. 3.2 illustrates that DSGANgenerates boundary points

among 4 circles. This kind of unseen data is used in novelty detection. In this case, we

assign pd and pd̄ as “the density function of 4 circles” and “the convolution of pd and the

normal distribution,” respectively. The intuition of our idea is also illustrated by an 1D

example in Fig. 3.3.

Difference­set generation We also validate DSGAN on high dimensional dataset such

as MNIST. In this example, we define pd to be the distribution of digit “1” and pd̄ to be the

distribution containing both digits “1” and “7”. Since the density pd(x) is high when x is

digit “1,” the generator is prone to output digit “7” with high probability. The illustration

of difference­set generation is demonstrated in Fig. 3.4 and 3.5.

From the above results, we can observe two properties of generator distribution pg: i)

the higher density of pd(x), the lower density of pg(x); ii) pg prefers to output samples

from high­density areas of pd̄(x)− αpd(x).

14

doi:10.6342/NTU201901502

In the next section, wewill show that the objective function is equivalent tominimizing

the Jensen­Shannon divergence between the mixture distribution (pd and pg) and pd̄ if G

and D are given enough capacity.

1

7

1

7

Figure 3.4: Illustration of difference­set seeking in MNIST.
Figure 3.5: DSGAN learns
the difference between two
sets.

3.3 Discussions about the objective function of DSGAN

There are two main issues in 3.1. The first is that how the α influence the learned distri­

bution pg. From the objective function, one can imagine that the larger α will reduce the

overlap between pd and pg. However, will the pg be really far away from pd if α is close

to 1? Depending on the design of pd̄, the answer can be yes or no. Second, in some cases,

it is possible that pd is not fully contained in pd̄. In other words,
pd̄(x)− αpd(x)

1− α
can be

negative for some x when α is large enough. In this section, we are going to demonstrate

that the negative part will not influence the learning of generator.

We will discuss about the issues using Fig. 3.6.

The influence of α In Fig. 3.6, the overlapped area between pd̄ and pd is 0.5 unit (let the

area of pd is 1 unit), so α = 0.5 is the smallest choice to let pg is disjoint to pd. As the

α = 0.8, the generated points locate at the place which has a gap to yellow points. In

theory, the result of α = 0.8 should be the same as that of α = 0.5, since the discriminator

should give the whole area which is outside pd but inside pd̄ same score. However, due to

the continuity of the discriminator (continuity is the key point to make GANwork, such as

15

doi:10.6342/NTU201901502

WGAN), the score of the area just beside the pd is lower than where is far from it, when one

has larger α. Because of this reason, the pg tend to keep away from pd. At α equals to 0.95,

we can find that pg still locate inside pd̄. In
pd̄(x)− αpd(x)

1− α
, there must be some points

making the expression are positive (when pd̄ ̸= pd), due to
∫
x
p(x)dx = 1. Therefore, pg

will generate such points. In this example, one can observe that pg is bounded by pd̄. As

the support of pd̄ is much larger than which of pd, excessive α will let pg stay away from

pd. On the other side, one can use smaller support of pd̄ to make pg close to pd.

Negative density One can figure out that pd is not fully contained in pd̄ in this example,

while the rectangle which is bounded by x <= 0, x >= −1, y >= −0.8 and y <= 0.8,

are in pd but not in pd̄. However, in the case which α = 0.5, we notice that the generator

still generates perfect difference set even though there are some deficient places with neg­

ative density. This can be explained through the intrinsic property of the discriminator.

By 3.2, the discriminator’s output of the points with negative density (x′) tend to be 0.

Observing the first term in 3.2, since x′ is not in pd̄, then no gradients will lead D(x′) to

arise to 1. D(x′) = 0 meets our goal that pg don’t overlap with pd. Therefore, although

there exists the negative density, the objective will not be effected.

3.4 Tricks for Stable Training

We provide a trick to stabilize the training procedure by reformulating the objective func­

tion. Specifically, V (G,D) in (3.2) is reformulated as:

V (G,D) =

∫
x

pd̄(x) log (D (x)) + ((1− α)pg(x) + αpd(x)) log (1−D (x)) dx

= Ex∼pd̄(x)
[logD(x)] + Ex∼(1−α)pg(x)+α∼pd(x) [log (1−D (x))] .

(3.3)

Instead of sampling amini­batch ofm samples from pz and pd in Algorithm 1, (1−α)m

and αm samples from both distributions are required, respectively. The computation cost

in training can be reduced due to fewer samples. Furthermore, although (3.3) is equiva­

lent to (3.2) in theory, we find that the training using (3.3) achieves better performance

16

doi:10.6342/NTU201901502

than using (3.2) via empirical validation in Table 6.1. We conjecture that the equivalence

between (3.3) and (3.2) is based on the linearity of expectation, but mini­batch stochastic

gradient descent in practical training may lead to the different outcomes.

3.5 Appendix: More Results for Case Study

Additional results for boundary samples generation and difference set generation are pre­

sented in Fig. 3.7 and Fig. 3.8, respectively.

17

doi:10.6342/NTU201901502

(a) α = 0.30 (b) α = 0.50

(c) α = 0.80 (d) α = 0.95

Figure 3.6: Demonstrate the influence of α on the synthetic dataset. In this example, pd
is the orange rectangle (bounded by x <= 1, x >= −1, y >= −0.8 and y <= 0.8), and
pd̄ is the rectangle which is shifted pd right by 1 unit (not appear in the figures). We can
observe that pg is farther away from pd (green points) when α increases. When α is 0.5,
pg learns perfect difference between pd̄ and pd. When α is 0.95, pg generates the rightmost
points of pd̄. The contour is the output of the discriminator, the place with higher score
the generator going. Note that the outputs of the discriminator are not restricted in [0, 1],
because we use WGAN’s structure in this experiment.

18

doi:10.6342/NTU201901502

(a) S shape with compact data points. α = 0.9. (b) S shape with scattering data points. α = 0.9.

(c) 4 Gaussians. α = 0.9. (d) 8 Gaussians. α = 0.8.

Figure 3.7: Extra 2D results for boundary sample generation. The orange points are data
points, and the green points are generated points.

19

doi:10.6342/NTU201901502

Figure 3.8: Difference set generation for CelebA dataset ([1]). pd̄ is 20000 images from
CelebA dataset. In pd̄, 1000 images are humans with glasses while others are ones without
glasses. pd all contains human wearing glasses, and its size is 19000. In this case, our
generator successfully learned to produce images which are human with glasses. Note
that α = 0.95.

20

doi:10.6342/NTU201901502

Chapter 4

Theoretical Results

There are two assumptions for subsequent proofs. First, in a nonparametric setting, we

assume both generator and discriminator have infinite capacity. Second, pg is defined as

the distribution of the samples drawn from G(z) under z ∼ pz. We will first show the

optimal discriminator given G and then show that minimizing V (G,D) via G given the

optimal discriminator is equivalent tominimizing the Jensen­Shannon divergence between

(1− α)pg + αpd and pd̄.

Proposition 1. For G being fixed, the optimal discriminator D is

D∗
G(x) =

pd(x)

pd(x) + (1− α)pg(x) + αpd(x)
.

Proof. Given any generatorG, the training criterion for the discriminatorD is tomaximize

the quantity V (G,D):

V (G,D) =

∫
x

pd̄(x) log (D (x)) dx+ (1− α)

∫
z

pz(z) log (1−D (G (z))) dz

+ α

∫
x

pd(x) log (1−D (x)) dx

=

∫
x

pd̄(x) log (D (x)) dx+ (1− α)

∫
x

pg(x) log (1−D (x)) dz

+ α

∫
x

pd(x) log (1−D (x)) dx

=

∫
x

pd̄(x) log (D (x)) + ((1− α)pg(x) + αpd(x)) log (1−D (x)) dx.

21

doi:10.6342/NTU201901502

For any (a, b) ∈ R2\{0, 0}, the function a log (y)+b log (1− y) achieves its maximum in

[0, 1] at y = a
a+b

. The discriminator only needs to be definedwithin Supp(pd̄)
⋃
Supp(pd)

⋃
Supp(pg).

We complete this proof.

Moreover, D can be considered to discriminate between samples from pd̄ and those

from ((1− α)pg(x) + αpd(x)). By replacing the optimal discriminator into V (G,D), we

obtain

C(G) = max
D

V (G,D)

= Ex∼pd̄(x)
[logD∗

G(x)] + (1− α)Ez∼pz(z) [log (1−D∗
G (G (z)))]

+ αEx∼pd(x) [log (1−D∗
G(x))]

= Ex∼pd̄(x)
[logD∗

G(x)] + Ex∼p∗(x) [log (1−D∗
G (x))]

= Ex∼pd̄(x)

[
log

pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
+ Ex∼p∗(x)

[
log

(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
,

(4.1)

where p∗(x) = (1−α)pg(x)+αpd(x) and the third equality holds because of the linearity

of expectation.

Actually, the results so far show the optimal solution ofD givenG being fixed in (4.1).

Now, the next step is to find the optimal G with D∗
G being fixed.

Theorem 1. The global minimum of C(G) is achieved if and only if (1 − α)pg(x) +

αpd(x) = pd̄(x) for all x’s. At that point, C(G) achieves the value − log 4.

22

doi:10.6342/NTU201901502

Proof. We start from

(4.1) = − log(4)

+ Ex∼pd̄(x)

[
log

2pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
+ Ex∼p∗(x)

[
log

2 ((1− α)pg(x) + αpd(x))

pd̄(x) + (1− α)pg(x) + αpd(x)

]
= − log(4) + KL

(
pd̄

∥∥∥∥ pd̄ + (1− α)pg + αpd
2

)
+ KL

(
(1− α)pg(x) + αpd

∥∥∥∥ pd̄ + (1− α)pg + αpd
2

)
= − log(4) + 2 JSD (pd̄ ∥ (1− α)pg + αpd) ,

where p∗(x) = (1−α)pg(x)+αpd(x), KL is the Kullback­Leibler divergence and JSD is

the Jensen­Shannon divergence. The JSD returns the minimal value, which is 0, iff both

distributions are the same, namely pd̄ = (1 − α)pg + αpd. Because pg(x)’s are always

non­negative, it should be noted both distributions are the same only if αpd(x) ≤ pd̄(x)

for all x’s. We complete this proof.

Note that (1−α)pg(x)+αpd(x) = pd̄(x) may not hold if αpd(x) > pd̄(x). But, DSGAN

still works based on two facts: i) givenD, V (G,D) is a convex function in pg and ii) due

to
∫
x

pg(x)dx = 1, the set collecting all feasible solutions of pg is convex. In other words,

there always exists a global minimum of V (G,D) given D, but it may not be − log(4).

In the following, we show that the support set of pg is contained within the difference

of support sets between pd̄ and pd while achieving the global minimum such that we can

generate the desired pg by designing appropriate pd̄.

Proposition 2. Suppose αpd(x) ≥ pd̄(x) for all x ∈ Supp(pd) and all density functions

pd(x), pd̄(x) and pg(x) are continuous. If the global minimum of C(G) is achieved, then

Supp (pg) ⊆ Supp (pd̄)− Supp(pd).

23

doi:10.6342/NTU201901502

Proof. Recall

C(G) =

∫
x

pd̄(x) log
(

pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

)
+ p∗(x) log

(
(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

)
dx

=

∫
x

S(pg;x)dx

=

∫
x∈Supp(pd̄)−Supp(pd)

S(pg;x)dx+

∫
x∈Supp(pd)

S(pg;x)dx

S(pg;x) is to simplify the notations inside the integral. For any x, S(pg;x) in pg(x) is

non­increasing and S(pg;x) ≤ 0 always holds. Specifically, S(pg;x) is decreasing along

the increase of pg(x) if pd̄(x) > 0; S(pg;x) attains the maximum value, zero, for any pg(x)

if pd̄(x) = 0. Since DSGAN aims to minimize C(G) with the constraint
∫
x

pg(d)dx = 1,

the solution attaining the global minima must satisfy pg(x) = 0 if pd̄(x) = 0; otherwise,

there exists another solution with smaller value of C(G). Thus, Supp (pg) ⊆ Supp (pd̄).

Furthermore, T (pg;x) =
∂S(pg;x)

∂pg(x)
= log

(
(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

)
, which

is expected to be as small as possible to minimize C(G), is increasing on pg(x) and con­

verges to 0. Then, we show that T (pg;x) for x ∈ Supp(pd̄)
⋂
Supp(pd) is always larger

than that for x ∈ Supp(pd̄)− Supp(pd) for all pg. Specifically,

1. When x ∈ Supp(pd̄)
⋂
Supp(pd), T (pg;x) ≥ log 1

2
always holds due to the assump­

tion αpd(x) ≥ pd̄(x).

2. When x ∈ Supp(pd̄) − Supp(pd), T (pg;x) < log 1
2
for all pg(x)’s satisfying (1 −

α)pg(x) ≤ pd̄(x).

Thus, the minimizer prefers pg(x) > 0 for x ∈ Supp(pd̄)− Supp(pd) and (1− α)pg(x) ≤

pd̄(x). We check whether there exists a solution pg such that (1 − α)pg(x) ≤ pd̄(x) and∫
x∈Supp(pd̄)−Supp(pd)

pg(d)dx = 1, implying pg(x) = 0 for x ∈ Supp(pd̄)
⋂
Supp(pd).

24

doi:10.6342/NTU201901502

Based on the following expression,

∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx +

∫
x∈Supp(pd)

pd̄(x)dx = 1

⇒
∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx ≥ 1−
∫
x∈Supp(pd)

αpd(x)dx

⇒
∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx ≥ 1− α

⇒
∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx ≥
∫
x∈Supp(pd̄)−Supp(pd)

(1− α)pg(x)dx,

the last inequality implies that there must exist a feasible solution. We complete this proof.

In sum, the generator is prone to output samples located in high­density areas of pd̄ −

αpd.

Another concern is the convergence of Algorithm 1.

Proposition 3. The discriminator reaches its optimal value given G in Algorithm 1, and

pg is updated by minimizing

Ex∼pd̄(x)
[logD∗

G(x)] + Ex∼p∗(x) [log (1−D∗
G (x))] .

IfG andD have enough capacity, then pg converges to argmin
pg

JSD (pd̄ ∥ (1− α)pg + αpd).

Proof. Consider V (G,D) = U(pg, D) as a function of pg. By the proof idea of Propo­

sition 2 in [14], if f(x) = supα∈A fα(x) and fα(x) is convex in x for every α, then

∂fβ(x) ∈ ∂f if β = argsupα∈A fα(x). In other words, if supD V (G,D) is convex in pg,

the subderivatives of supD V (G,D) includes the derivative of the function at the point,

where the maximum is attained, implying the convergence with sufficiently small updates

of pg. We complete this proof.

25

doi:10.6342/NTU201901502

26

doi:10.6342/NTU201901502

Chapter 5

Applications

DSGAN have been applied to three problems: semi­supervised learning, robustness en­

hancement of deep networks and novelty detection. As for semi­supervised learning, DS­

GAN acts as a “bad generator,” which creates complement samples in the feature space of

real data, while DSGAN generates adversarial examples located in the low­density areas

of training data for robustness enhancement. For novelty detection, DSGAN generates

samples (unseen data) as the boundary points around training data.

5.1 Semi­Supervised Learning

Semi­supervised learning (SSL) is a kind of learning model with the use of a small number

of labeled data and a large amount of unlabeled data. The existing SSL methods based on

generative model (e.g., VAE [31] and GAN [4]) obtain good empirical results. [5] theo­

retically shows that good semi­supervised learning requires a bad GAN with the objective

function:

max
D

Ex,y∼L logPD (y | x, y ≤ K) + Ex∼pd(x) logPD (y ≤ K | x)

+ Ex∼pg(x) logPg (K + 1 | x) ,
(5.1)

where (x, y) denotes a pair of data and its corresponding label, {1, 2, . . . , K} denotes the

label space for classification, and L = {(x, y)} is the label dataset. Moreover, in the

27

doi:10.6342/NTU201901502

semi­supervised settings, pd in (5.1) is the distribution of unlabeled data. Note that the

discriminator D in GAN also plays the role of classifier. If the generator distribution

exactly matches the real data distribution (i.e., pg = pd), then the classifier trained by the

objective function (5.1) with the unlabeled data cannot have better performance than that

trained by supervised learning with the objective function:

max
D

Ex,y∼L logPD (y | x, y ≤ K) . (5.2)

On the contrary, the generator is preferred to generate complement samples, which lie

on the low­density area of pd. Under some mild assumptions, those complement samples

help D to learn correct decision boundaries in the low­density area because the probabil­

ities of true classes are forced to be low on out­of­distribution areas.

The complement samples in [5] are complicate to produce. We will demonstrate that

DSGAN is easy to generate complement samples in Sec. 6.

5.2 Robustness Enhancement of Deep Networks

Deep neural networks have impacted on our daily life. Neural networks, however, are

vulnerable to adversarial examples, as evidenced in recent studies [32, 33]. Thus, there

has been significant interest in how to enhance the robustness of neural networks. Un­

fortunately, if the adversary has full access to the network, namely white­box attack, a

complete defense strategy has not yet been found.

In the research papers, it’s not hard to see a well trained deep neural model reaching

more than 90% accuracy on a classification task. It seems that the machine beats human in

recognition nowadays. Nonetheless, the machine vision is surprisingly fragile. For most

of the inputs which are classified correctly, one can constructed an adversarial example

by adding a specific noise to original input, to make the predicted results totally wrong.

In most of the time, the original image and its adversarial example are undistinguished for

human, such as Fig. 5.1.

One can create an adversarial example through 5.3, where p is 2 or inf, typically. Intu­

28

doi:10.6342/NTU201901502

Figure 5.1: Demonstration for the adversarial example. Adding a special noise to the
panda image can change the prediction of the model to “gibbon”. Moreover, the noise on
the adversarial example is unperceivable for human.

itively, optimizing the equation is to find a perturbation for the input to let the model less

likely to predict the correct label.

max
∥δ∥p≤ϵ

ℓ (x+ δ; y;Cθ) (5.3)

[34] surveyed the state­of­the­art defense strategies and showed that adversarial train­

ing [35] is more robust than other strategies. Given adversarial examples and a trained

classifier C parameterized with θ and a loss function ℓ (x; y;Cθ), adversarial training

solves a min­max game, where the first step is to find adversarial examples within ϵ­ball

for maximizing the loss, and the second step is to train the model for minimizing the loss.

Specifically, the objective in [35] is

argmin
θ

E(x,y)∼L

[
max

δ∈[−ϵ, ϵ]N
ℓ (x+ δ; y;Cθ)

]
. (5.4)

The authors used projected gradient descent (PGD) to find adversarial examples by max­

imizing the inner optimization.

Adversarial training requires the pretrained classifiers to calculate PGD such that ad­

versarial examples may be effective on specific classifiers. But, our DSGAN generates

unseen data in the low­density area, which include adversarial examples, because [36]

pointed out that adversarial examples frequently locate in the low­density area. In other

29

doi:10.6342/NTU201901502

words, the generated data in DSGAN are more universal but less effective for specific

classifiers. In Sec. 6.2, we enhance the robustness of deep learning networks in a semi­

supervised manner, which use generated samples of DSGAN to fine­tune Cθ. ϵ­ball in

terms of ℓ2 or ℓinf can be intuitively incorporated into the generation of adversarial exam­

ples.

5.3 Novelty Detection

Novelty detection determines if a query example is from one seen class. If the samples of

one seen class are considered as positive data, then this difficulty is the absence of neg­

ative data in the training phase such that supervised learning cannot work. To overcome

this problem, one of classical methods is the One­Class SVM (OCSVM) [37] that only

requires positive data as training inputs. However, OCSVM often suffers from the curse

of dimensionality due to bad computational scalability.

Recently, novelty detection has made a great progress with the advent of deep leaning.

[38][39] focus on learning a representative latent space for the one seen class. When

testing, the query image is projected onto the learned latent space. Then, the difference

between the query image and its inverse image (reconstruction) is measured. In other

words, all we need is to train an encoder for projection and a decoder for reconstruction.

Under the circumstance, autoencoder (AE) usually is adopted to learn both encoder and

decoder [38][10]. Let Enc(·) be the encoder and Dec(·) be the decoder, respectively. The

loss function of AE is defined as:

min
Enc,Dec

Ex∼ppos(x)

[
∥x− Dec(Enc(x))∥22

]
, (5.5)

where ppos is the distribution of one seen class. After training, a query example xtest is

classified as the seen class if

∥xtest − Dec(Enc(xtest))∥22 ≤ τ, (5.6)

30

doi:10.6342/NTU201901502

where τ ∈ R+ plays the trade­off between true positive rate and false positive rate. How­

ever, (5.6) is based on two assumptions: (1) the positive samples from one seen class

should have lower reconstruction error; (2) the AE (or latent space) cannot describe nega­

tive examples from unseen classes well, leading to a relatively higher reconstruction error.

In general, the first assumption inherently holds when both testing and training data come

from the same seen class. However, [38][10] observed that the assumption (2) does not

hold at all times because the loss function in (5.5) does not include a loss term to enforce

negative data to have high reconstruction error.

To make the assumption (2) hold, given positive data as training inputs, we propose

using DSGAN to generate negative examples in the latent space in Sec. 6.3. Then, the

loss function of AE is modified to enforce negative data to have high reconstruction error.

31

doi:10.6342/NTU201901502

32

doi:10.6342/NTU201901502

Chapter 6

Experiments

In this section, we demonstrate the empirical results about semi­supervised learning, ro­

bustness enhancement of deep networks and novelty detection in Sec. 6.1, Sec. 6.2 and

Sec. 6.3, respectively.

Note that, the training procedure of DSGAN can be improved by other extensions

of GANs such as WGAN [25], WGAN­GP [26], EBGAN [40], LSGAN [41] and etc.

WGAN­GP was adopted in our method such that DSGAN is stable in training and suffers

less mode collapse.

6.1 DSGAN in Semi­Supervised Learning

Following the previous works, we apply the proposed DSGAN in semi­supervised learn­

ing on three benchmark datasets, includingMNIST [42], SVHN [43], and CIFAR­10 [44].

We first introduce how DSGAN generates complement samples in the feature space.

Specifically, [5] proved that if complement samples generated by G can satisfy the fol­

lowing two assumptions in (6.1) and (6.2):

∀x ∼ pg(x), 0 > max
1≤i≤K

wT
i f(x) and ∀x ∼ pd(x), 0 < max

1≤i≤K
wT

i f(x), (6.1)

33

doi:10.6342/NTU201901502

where f is the feature extractor and wi is the linear classifier for the ith class and

∀x1 ∼ L, x2 ∼ pd(x), ∃xg ∼ pg(x) s.t.

f(xg) = βf(x1) + (1− β)f(x2) with β ∈ [0, 1],

(6.2)

then all unlabeled data will be classified correctly via the objective function (5.1). Specif­

ically, (6.1) ensures that classifiers are capable of discriminating generated data from un­

labeled data, and (6.2) is to make the decision boundary locate in low­density areas of

pd.

The assumption in (6.2) implies the complement samples have to be in the space cre­

ated by linear combination of labeled and unlabeled data. Besides, they cannot fall into

the real data distribution pd due to the assumption (6.1). In order to let DSGAN generate

such samples, we let the samples of pd̄ be the linear combination of those from L and pd.

Since pg(x) ≈ pd̄(x)− αpd(x)

1− α
, pg will tend to match pd̄ while the term −αpd ensures

that samples from pg do not belong to pd. Thus, pg satisfies both assumptions in (6.1) and

(6.2).

In practice, we parameterize f and all wi’s together as a neural network. The details

of the experiments, including the network architectures, can be found in Appendix 6.1.3.

6.1.1 Datasets: MNIST, SVHN, and CIFAR­10

For evaluating the semi­supervised learning task, we used 60000/ 73257/ 50000 samples

and 10000/ 26032/ 10000 samples from the MNIST/ SVHN/ CIFAR­10 datasets for train­

ing and testing, respectively. Due to the semi­supervised setting, we randomly chose 100/

1000/ 4000 samples from the training samples as the MNIST/ SVHN/ CIFAR­10 labeled

dataset, and the amount of labeled data for all classes are equal.

Our criterion to determine the hyperparameters is introduced in Appendix 6.1.3. We

performed testing with 10/ 5/ 5 runs on MNIST/ SVHN/ CIFAR­10 based on the selected

hyperparameters and randomly selected labeled dataset. Following [5], the results are

recorded as the mean and standard deviation of the number of errors from each run.

34

doi:10.6342/NTU201901502

6.1.2 Main Results

First, the hyperparameters we chose are depicted in Table 6.3 in Appendix 6.1.3. Second,

the results obtained from our DSGAN and the state­of­the­art methods on three benchmark

datasets are depicted in Table 6.2. The effectiveness of applying the tricks in Sec. 3.4 is

show in Table 6.1, and it validate the influence of the tricks.

Table 6.1: Semi­supervised learning results onMNIST whether to use the sampling tricks.

Methods MNIST (# errors)

Our method w/o tricks 91.0 ± 7.0

Our method w/ tricks 82.7 ± 4.6

It can be observed that our results can compete with state­of­the­art methods on the

three datasets. Note that the results of badGAN [5] were reproduced by the released codes

of the authors.

In comparison with [5], our methods don’t need to rely on an additional density es­

timation network PixelCNN++ [45]. Although PixelCNN++ is one of the best density

estimation network, it cannot estimate the density in the feature space, which is dynamic

during training. This drawback makes the models in [5] fail to fulfill the assumptions in

their paper.

Moreover, it can also be observed in Table 6.2 that our results are comparable to the

best record of badGAN [5] and are better than other approaches in MNIST and SVHN. In

CIFAR­10, our method is only inferior to CT­GAN. It might not be a fair comparison since

CT­GAN uses extra techniques, including temporal ensembling and data augmentation,

but other methods do not.

35

doi:10.6342/NTU201901502

Table 6.2: Comparison of semi­supervised learning between our DSGAN and state­of­
the­art methods: CatGAN [2], TripleGAN [3], FM [4], badGAN [5] and CT­GAN [6].
For a fair comparison, we only consider the GAN­based methods. ∗ indicates the use of
the same architecture of classifier. † indicates a larger architecture of classifier. ‡ indicates
the use of data augmentation. The results for MNIST are recorded in the number of errors
while the others are in percentage of errors.

Methods MNIST SVHN CIFAR­10
CatGAN 191 ± 10 ­ 19.58 ± 0.46

TripleGAN† 91 ± 58 5.77 ± 0.17 16.99 ± 0.36
FM∗ 93 ± 6.5 8.11 ± 1.3 18.63 ± 1.32

badGAN∗ 86.2 ± 13.2 4.48 ± 0.16 16.25 ± 0.33
CT­GAN‡ ­ ­ 9.98 ± 0.21

Our method∗ 82.7 ± 4.6 4.88 ± 0.07 15.08 ± 0.24

6.1.3 Appendix: Experimental Details

Hyperparameters

The hyperparameters were chosen to make our generated samples consistent with the as­

sumptions in (6.1) and (6.2). However, in practice, if we make all the samples produced

by the generator following the assumption in (6.2), then the generated distribution is not

close to the true distribution, even a large margin between them existing in most of the

time, which is not what we desire. So, in our experiments, we make a concession that the

percentage of generated samples, which accords with the assumption, is around 90%. To

meet this objective, we tune the hyperparameters. Table 6.3 shows our setting of hyper­

parameters, where β is defined in (6.2).

Table 6.3: Hyperparameters in semi­supervised learning.

Hyperparameters MNIST SVHN CIFAR­10

α 0.8 0.8 0.5

β 0.3 0.1 0.1

36

doi:10.6342/NTU201901502

Architecture

In order to fairly compare with other methods, our generators and classifiers for MNIST,

SVHN, and CIFAR­10 are same as in [4] and [5]. However, different from previous works

that have only a generator and a discriminator, we design an additional discriminator in

the feature space, and its architecture is similar across all datasets with only the difference

in the input dimensions. Following [5], we also define the feature space as the input space

of the output layer of discriminators.

Compared to SVHN and CIFAR­10, MNIST is a simple dataset as it is only composed

of fully connected layers. Batch normalization (BN) or weight normalization (WN) is

used to every layer to stable training. Moreover, Gaussian noise is added before each

layer in the classifier, as proposed in [46]. We find that the added Gaussian noise exhibits

a positive effect for semi­supervised learning and keep to use it. The architecture is shown

in Table 6.4.

Table 6.5 and Table 6.6 are models for SVHN and CIFAR­10, respectively, and these

models are almost the same except for some implicit differences, e.g., the number of con­

volutional filters and types of dropout. In these tables, given a dropping rate, “Dropout”

is a normal dropout in that the elements of input tensor are randomly set to zero while

Dropout2d is a dropout only applied on the channels to randomly zero all the elements.

Furthermore, the training procedure alternates between k steps of optimizing D and

one step of optimizing G. We find that k in Algorithm 1 is a key role in the problem of

mode collapse for different applications. For semi­supervised learning, we set k = 1 for

all datasets.

6.2 DSGAN inRobustness Enhancement ofDeepNetworks

Our proposed DSGAN is capable of improving the robustness of deep models (classi­

fiers) against adversarial examples. In the experiments, we mainly validate DSGAN

on CIFAR­10, including natural images, which are easier to attack, compared with the

MNIST dataset.

37

doi:10.6342/NTU201901502

Table 6.4: Network architectures for semi­supervised learning on MNIST. (GN: Gaussian
noise)

Generator G Discriminator D Classifier C
Input z ∈ R100 from unif(0, 1) Input 28× 28 gray image Input 28× 28 gray image

100× 500 FC layer with BN
Softplus
500× 500 FC layer with BN
Softplus
500× 784 FC layer with WN
Sigmoid

250× 400 FC layer
ReLU
400× 200 FC layer
ReLU
200× 100 FC layer
ReLU
100× 1 FC layer

GN, std = 0.3
784× 1000 FC layer with WN ,ReLU
GN, std = 0.5
1000× 500 FC layer with WN, ReLU
GN, std = 0.5
500× 250 FC layer with WN, ReLU
GN, std = 0.5
250× 250 FC layer with WN, ReLU
GN, std = 0.5
250× 250 FC layer with WN, ReLU

250× 10 FC layer with WN

Table 6.5: The architectures of generator and discriminator for semi­supervised learning
on SVHN and CIFAR­10. N was set to 128 and 192 for SVHN and CIFAR­10, respec­
tively.

Generator G Discriminator D
Input z ∈ R100 from unif(0, 1) Input 32× 32 RGB image

100× 8192 FC layer with BN, ReLU
Reshape to 4× 4× 512
5× 5 conv. transpose 256 stride = 2 with BN, ReLU
5× 5 conv. transpose 128 stride = 2 with BN, ReLU
5× 5 conv. transpose 3 stride = 2 with WN, Tanh

N × 400 FC layer, ReLU
400× 200 FC layer, ReLU
200× 100 FC layer, ReLU
100× 1 FC layer

Recall that the objective function (5.4) requires finding adversarial examples to maxi­

mize the classification error ℓ (·). Adversarial examples usually locate on the low­density

area of pd and are generated from labeled data via gradient descent. Instead of using gra­

dient descent, we aim to generate adversarial examples via GAN. Apart from the feature

space in semi­supervised learning, DSGAN directly generates samples in the image space.

By assigning pd̄ as the convolution of pd and uniform distribution, the samples from pg will

locate on the low­density area of pd. Furthermore, the distortion ϵ is directly related to the

range of uniform distribution. It, however, may be impractical for training the generator

for each class. Thus, we propose a novel semi­supervised approach here.

38

doi:10.6342/NTU201901502

Table 6.6: The architecture of classifiers for semi­supervised learning on SVHN and
CIFAR­10. (GN: Gaussian noise, lReLU(leak rate): LeakyReLU(leak rate))

Classifier C for SVHN Classifier C for CIFAR­10
Input 32× 32 RGB image Input 32× 32 RGB image

GN, std = 0.05
Dropout2d, dropping rate = 0.15
3× 3 conv. 64 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 64 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 64 stride = 2 with WN, lReLU(0.2)
Dropout2d, dropping rate = 0.5
3× 3 conv. 128 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 128 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 128 stride = 2 with WN, lReLU(0.2)
Dropout2d, dropping rate = 0.5
3× 3 conv. 128 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 128 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 128 stride = 1 with WN, lReLU(0.2)
Global average Pooling

128× 10 FC layer with WN

GN, std = 0.05
Dropout2d, dropping rate = 0.2
3× 3 conv. 96 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 96 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 96 stride = 2 with WN, lReLU(0.2)
Dropout, dropping rate = 0.5
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 2 with WN, lReLU(0.2)
Dropout, dropping rate = 0.5
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 192 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 192 stride = 1 with WN, lReLU(0.2)
Global average Pooling

192× 10 FC layer with WN

Three stages are required to train our model: First, we train a baseline classifier on

all the training data. All the training data are labeled, which represent samples from L in

(6.3). Second, we train a generator to generate unseen data, including adversarial exam­

ples, without depending on classifiers and treat these unseen data as additional unlabeled

training data (x ∼ pg in (6.3)). Note that the generated data in this stage can be applied to

all classifiers. Third, we fine­tune the classifierCθ with all training data and the generated

data produced by the generator via minimizing the following objective:

argmin
θ

E(x,y)∼L [ℓ (x; y;Cθ)] + w · Exg∼pg(x) [H (Cθ(xg))] , (6.3)

where the first term is a typical supervised loss such as cross­entropy loss and the second

term is the entropy lossH of generated unlabeled samples corresponding to the classifier,

which means that we would like the classifier to confidently classify the generated sam­

ples. In other words, if an adversarial example xg is the closest to one of labeled data x, it

should be classified into the class of x. Thus, the additional entropy loss will prevent our

model from the attack by adversarial examples.

39

doi:10.6342/NTU201901502

Furthermore, in (6.3), one can view that w is the trade­off between the importance of

labeled data in the high­density area and that of unlabeled data in the low­density area.

If w is 0, the model might be prone to classify correctly only on the labeled data. When

increasing w, the model will place more emphasis on unlabeled data. Since the unlabeled

data act as adversarial examples, the classifier is more robustness.

6.2.1 Experiments Settings

We evaluated the trained models against a range of adversaries, where the distortion is

evaluated in terms of ℓ2­norm or ℓinf­norm. The adversaries include:

• White­box attacks with Fast Gradient Sign Method (FGSM) [12] using ℓinf­norm.

• White­box attacks with PGD [47] using ℓinf­norm.

• White­box attackswithDeepfool [48] using ℓ2­norm (denotd asDeepFoolL2Attack)

and ℓinf­norm (denoted as DeepFoolLinfinityAttack).

According to different adversaries, we generated 10000 adversarial examples from

testing data and calculated the accuracy of the model after attacking. The accuracy is

recorded as the probability that adversarial examples fail to attack when the distortion

created by attacking algorithm cannot exceed a maximum value. We also train our models

with different ranges of uniform distribution. The experimental detail can be found in

Appendix 6.2.3.

To validate our method, we proposed two kinds of baseline networks. One is a baseline

classifier we train in the first stage, which is a typical classifier trained by all data. The

other one is the model with noisy inputs. Adding noise to the input is a prevalent strategy

to train a classifier and it is also able to protect the neighborhood of the training data. For

fair comparison with our method, uniform noise was used in the second baseline model.

6.2.2 Main Results

Fig. 6.1, 6.2 and 6.3 demonstrates that our models exhibit stronger robustness among all

the adversaries.

40

doi:10.6342/NTU201901502

We claim that our method can outperform other baselines in a wide range of values of

w. We find that the model benefits from controlling the weight w. When we increase the

w from 1 to 3, and then from 3 to 10, the robustness keeps becoming stronger.

Our second baseline models have the similar intuition with our method as they prop­

agate the label information to the neighborhood of each data point by introducing the

noise to inputs. This strategy can improve the accuracy and robustness. Nevertheless,

the training data distribution after applying noise can be viewed as a smoother version of

the original distribution. Most samples still locate in the high­density area of the original

distribution. In view of this, the second baseline models cannot emphasize low­density

samples via w as our proposed model does, leading to inferior robustness.

Our method relies on a generator to produce low­density data. The generated samples

help our model to put decision boundary outside low­density area. Thus, the model can

theoretically resist adversarial attacks with larger distortions. It is worth mentioning that

our method is able to combine with the idea of second baseline to the supervised term in

(6.3) and the performance might be improved.

Figure 6.1: Accuracy of baseline and our models after attacks. Blue line indicates the
first baseline model. Orange, green and red lines denote the second baseline models with
different ranges of uniform noise. Purple, brown and pink lines indicate our methods. In
the legend, the float number (0.01, 0.03 and 0.05) also indicates the variance of noises, and
“w1” means that w in (6.3) is set to 1. “epsilon” means the ℓ2 (or ℓinf) norm between the
original image (pixel values are normalized to a range of [−0.5, 0.5]) and corresponding
adversarial example.

41

doi:10.6342/NTU201901502

Figure 6.2: The setting is the same with Fig. 6.3 unless w = 3.

Figure 6.3: The setting is the same with Fig. 6.3 unless w = 10.

6.2.3 Appendix: Experimental Details

The size of labeled data for CIFAR­10 is 50000 (45000 for training and 5000 for validation)

and we balance the number of data for each class.

In our experiments, as for the second stage, we train DSGAN for 200 epochs in Algo­

rithm 1 to generate our adversarial examples. In the third stage, we finetune the baseline

classifier for 50 epochs.

In the experiments on CIFAR­10, the generator and discriminator are the same as those

in semi­supervised learning. The architecture is described in Table 6.5 and the classifier

is modified from the one shown in Table 6.6. First, we get rid of all the dropouts and

Gaussian noise so that we can compare among different models with less randomness.

42

doi:10.6342/NTU201901502

The architecture is described in Table 6.7. Furthermore, k is assigned to 5 in all ex­

periments.

Table 6.7: The architecture of classifier for robustness enhancement of deep networks on
CIFAR­10. (lReLU(leak rate): LeakyReLU(leak rate))

Classifier C for CIFAR­10
Input 32× 32 RGB image

3× 3 conv. 96 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 96 stride = 2 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 2 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 192 stride = 1 with WN, lReLU(0.2)
Global average Pooling

192× 192 FC layer with WN, lReLU(0.2)
192× 192 FC layer with WN, lReLU(0.2)
192× 192 FC layer with WN, lReLU(0.2)
192× 10 FC layer with WN

6.3 DSGAN in Novelty Detection

In this section, we study how to use DSGAN for helping novelty detection. As men­

tioned in Sec. 5.3, we need to train AE such that (i) positive samples from one seen class

have lower reconstruction error; (ii) negative samples from unseen classes incur relatively

higher reconstruction error.

The nuclear idea is to use DSGAN to generate negative samples, which originally do

not exist under the scenario of novelty detection. Then, we add a new loss term to penalize

low reconstruction errors of negative samples (see the third stage below). Three stages are

required to train our model (AE):

1. Train the encoder Enc(·) and decoder Dec(·) using the loss function (5.5).

2. Given x ∼ ppos, collect Enc(x) as samples drawn from pd. pd̄ is the convolution

of pd and a normal distribution with zero mean and variance σ. Then, we train

DSGAN to generate negative samples, which are drawn from pd̄(x) − pd(x) and

43

doi:10.6342/NTU201901502

are the boundary points around positive samples in the latent space. Note that there

are some variations in DSGAN: the input of the generator G is Enc(x) instead of a

random vector z in the latent space; we also add ∥Enc(x) − G(Enc(x))∥22 to train

generator so that the output is close to the input.

3. Fixing the encoder, we retrain the decoder by the modified loss function:

min
Dec

Ex∼ppos(x)

[
∥x− Dec(Enc(x))∥22 + w ·max

(
0,m− ∥x− Dec(G(Enc(x)))∥22

])
,

where w is the trade­off of reconstruction errors between positive samples Enc(x)

and negative samples G(Enc(x)). The second term charges the negative sample

with high error bounded bym, which is suggested in [40].

The above algorithm, called VAE+DSGAN, can be used to strengthen the existing AE­

based methods by using them in the first stage. In the simulation, we used variational

autoencoder (VAE) [7], since it performs better than AE in novelty detection.

6.3.1 Main Results

In this section, following [10], the performance was evaluated using Area Under the Curve

(AUC) of Receiver Operating Characteristics (ROC) curve. Given a dataset, one of classes

was chosen as the seen class for training and all classes were used for testing. There

exist several testing benchmarks for novelty detection, such as MNIST, COIL100 [49]

and CIFAR­10. The state­of­the­art method [10] achieves high performance in AUC on

MNIST and COIL100 (AUC is larger than 0.97). But, for CIFAR­10, [10] only achieves

0.656. Thus, we chose the challenge dataset CIFAR­10 as the benchmark to evaluate our

method. The detailed network architecture can be found in Appendix 6.3.2.

Since VAE+DSGAN can be considered as finetuning VAE [7], we first illustrate the

key difference between VAE and VAE+DSGAN in Fig. 6.4. Seen class, which is at the

bottom of the images, is car. Other rows are images from unseen classes. One can see that

the reconstructed images are fairly good even for the unseen class in VAE. By contrast,

our method enforces the reconstructed images of unseen classes to be blurred, while it

44

doi:10.6342/NTU201901502

Original images VAE Ours (VAE + DSGAN)

Figure 6.4: Comparison of the reconstructed results of VAE and our method. Seen class,
which is at the bottom of the images, is car. Other rows are images from unseen classes.
Our method exhibits a relatively larger gap, in terms of reconstruction error between seen
data and unseen data, than VAE.

Table 6.8: Comparison between ourmethod (VAE+DSGAN) and state­of­the­art methods:
VAE [7], AND [8], DSVDD [9], and OCGAN [10]. The results for Cifar­10 were recorded
in terms of AUC value. The number in the top row indicates the seen class, where 0: Plain,
1: Car, 2: Bird, 3: Cat, 4: Deer, 5: Dog, 6: Frog,7: Horse, 8: Ship, 9: Truck.

0 1 2 3 4 5 6 7 8 9 MEAN
VAE .700 .386 .679 .535 .748 .523 .687 .493 .696 .386 .583
AND .735 .580 .690 .542 .761 .546 .751 .535 .717 .548 .641

DSVDD .617 .659 .508 .591 .609 .657 .677 .673 .759 .731 .648
OCGAN ..757 .531 .640 .620 .723 .620 .723 .575 .820 .554 .657

Our method .737 .614 .676 .644 .759 .562 .660 .646 .769 .633 .670

still preserves the reconstruction quality of the seen class. Thus, our method achieves a

relatively larger gap, in terms of reconstruction error between the seen data and unseen

data, than VAE.

In Table 6.8, we compared the proposed method with several methods, including VAE

[7], AND [8], DSVDD [9], and OCGAN [10] in terms of AUC value. One can see that

our method almost outperforms VAE in most of cases. Furthermore, the mean of AUC

values of our method also is higher than those of state­of­the­art methods. It is worth

mentioning that, in addition to VAE, DSGAN has potential of combining with other AE­

based methods.

45

doi:10.6342/NTU201901502

6.3.2 Experimental Details

The architecture of GAN and VAE are depicted in Table 6.9 and 6.10, respectively.

In the experiment, we first trained theVAE for 500 epochs and thenwe trainedDSGAN

for 500 epochs with m = 1.5 and w = 0.5. Third, we fixed the encoder and tuned the

decoder with both positive and negative samples (generated by DSGAN) for 600 epochs.

Table 6.9: The architectures of generator and discriminator in DSGAN for novelty detec­
tion.

Generator G Discriminator D
Input: 128 dimension feature Input: 128 dimension feature

128× 1024 FC layer with BN, ReLU
1024× 512 FC layer with BN, ReLU
512× 256 FC layer with BN, ReLU
256× 128 FC layer

128× 400 FC layer, ReLU
400× 200 FC layer, ReLU
200× 100 FC layer, ReLU
100× 1 FC layer

Table 6.10: The architectures of VAE for novelty detection.

Encoder Decoder

5× 5 conv. 32 stride = 2, with BN, lReLU(0.2)
5× 5 conv. 64 stride = 2, with BN, lReLU(0.2)
5× 5 conv. 128 stride = 2, with BN, lReLU(0.2)
(For mean)
4× 4 conv. 128 stride = 1
(For std)
4× 4 conv. 128 stride = 1

5× 5 conv. transpose 128 stride = 2 with BN, lReLU(0.2)
5× 5 conv. transpose 64 stride = 2 with BN, lReLU(0.2)
5× 5 conv. transpose 32 stride = 2 with BN, lReLU(0.2)
5× 5 conv. transpose 3 stride = 2, Tanh

46

doi:10.6342/NTU201901502

Chapter 7

Conclusions

We propose DSGAN that can produce any unseen data based on the assumption that the

density of unseen data distribution can be the difference between the densities of any two

distributions. DSGAN is useful in the environment when samples from unseen data distri­

bution are more difficult to collect than those from the two known distributions. Empirical

and theoretical results are provided to validate the effectiveness of DSGAN. Finally, be­

cause DSGAN is developed based on GAN, it is easy to extend any improved versions of

GAN to DSGAN.

There are three common operations, union, intersection and complement, in set theory.

Union and complement can be tackled with traditional GAN and DSGAN, respectively.

In the future work, we would like to extend the concepts of DSGAN to cope with the

intersection. Once the basic operations are completed, we anticipate that GAN is capable

of learning a variety of distributions.

47

doi:10.6342/NTU201901502

48

doi:10.6342/NTU201901502

Bibliography

[1] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. From facial parts re­

sponses to face detection: A deep learning approach. 2015 IEEE International Con­

ference on Computer Vision (ICCV), pages 3676–3684, 2015.

[2] Jost Tobias Springenberg. Unsupervised and semi­supervised learning with categor­

ical generative adversarial networks. In ICLR, 2016.

[3] Chongxuan Li, Kun Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets.

In NIPS, 2017.

[4] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

Xi Chen, and Xi Chen. Improved techniques for training gans. In NIPS, pages

2234–2242. 2016.

[5] Zihang Dai, Zhilin Yang, Fan Yang, WilliamWCohen, and Ruslan R Salakhutdinov.

Good semi­supervised learning that requires a bad gan. In NIPS, pages 6510–6520.

2017.

[6] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the

improved training of wasserstein gans: A consistency term and its dual effect. In

ICLR, 2018.

[7] D. P. Kingma and Max Welling. Auto­encoding variational bayes. In ICLR. 2014.

[8] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara. And: Autoregressive novelty

detectors. In IEEE CVPR, 2019.

49

doi:10.6342/NTU201901502

[9] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed

Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one­class

classification. In ICML, pages 4393–4402, 2018.

[10] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. OCGAN: one­class novelty

detection using gans with constrained latent representations. In IEEE CVPR, 2019.

[11] Y. Yu, W.­Y. Qu, N. Li, and Z. Guo. Open­category classification by adversarial

sample generation. In IJCAI, pages 3357–3363, 2017.

[12] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial

examples. In ICLR, 2015.

[13] Y. Saito, S. Takamichi, and H. Saruwatari. Statistical parametric speech synthesis

incorporating generative adversarial networks. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 26(1):84–96, 2018.

[14] Ian Goodfellow, Jean Pouget­Abadie, Mehdi Mirza, Bing Xu, David Warde­Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NIPS, pages 2672–2680. 2014.

[15] A.V. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks.

In ICML, pages 1747–1756. 2016.

[16] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. In NeurIPS, 2018.

[17] Jun­Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image­to­

image translation using cycle­consistent adversarial networks. 2017 IEEE Interna­

tional Conference on Computer Vision (ICCV), pages 2242–2251, 2017.

[18] Bo Dai, Dahua Lin, Raquel Urtasun, and Sanja Fidler. Towards diverse and natural

image descriptions via a conditional gan. 2017 IEEE International Conference on

Computer Vision (ICCV), pages 2989–2998, 2017.

50

doi:10.6342/NTU201901502

[19] Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video sum­

marization with adversarial lstm networks. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2982–2991, 2017.

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time­scale update rule converge to a local nash

equilibrium. In NIPS, 2017.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa­

tion learning with deep convolutional generative adversarial networks. CoRR,

abs/1511.06434, 2016.

[22] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and

Stephen Paul Smolley. Least squares generative adversarial networks. 2017 IEEE

International Conference on Computer Vision (ICCV), pages 2813–2821, 2017.

[23] Martín Arjovsky and Léon Bottou. Towards principled methods for training gener­

ative adversarial networks. CoRR, abs/1701.04862, 2017.

[24] M. Arjovsky and L. Bottou. Towards principled methods for training generative

adversarial networks. In ICLR. 2017.

[25] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial net­

works. In ICML, volume 70, pages 214–223, 2017.

[26] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C.

Courville. Improved training of wasserstein gans. In NIPS, 2017.

[27] M. Hou, B. Chaib­draa, C. Li, and Q. Zhao. Generative adversarial positive­

unlabelled learning. In IJCAI, pages 2255–2261, 2018.

[28] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence­

calibrated classifiers for detecting out­of­distribution samples. In ICLR, 2018.

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral

normalization for generative adversarial networks. In ICLR. 2018.

51

doi:10.6342/NTU201901502

[30] Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,

and Honglak Lee. Generative adversarial text to image synthesis. In ICML, 2016.

[31] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.

Semi­supervised learning with deep generative models. In NIPS, pages 3581–3589.

2014.

[32] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The

limitations of deep learning in adversarial settings. In IEEE European Symposium

on Security and Privacy (EuroS P), pages 372–387, 2016.

[33] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In

IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

[34] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples. In ICML. 2018.

[35] A.Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning

models resistant to adversarial attacks. In ICLR. 2018.

[36] Yingzhen Li. Are generative classifiers more robust to adversarial attacks?, 2018.

[37] Bernhard Schölkopf, John C. Platt, John C. Shawe­Taylor, Alex J. Smola, and

Robert C. Williamson. Estimating the support of a high­dimensional distribution.

Neural Comput., 13(7):1443–1471, 2001.

[38] Stanislav Pidhorskyi, Ranya Almohsen, Donald A. Adjeroh, and Gianfranco

Doretto. Generative probabilistic novelty detection with adversarial autoencoders.

In NIPS, pages 6823–6834, 2018.

[39] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with

nonlinear dimensionality reduction. InMLSDA, pages 4–11, 2014.

[40] J. J. Zhao, M.Mathieu, and Y. LeCun. Energy­based generative adversarial network.

In ICLR, 2017.

52

doi:10.6342/NTU201901502

[41] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least squares

generative adversarial networks. In IEEE ICCV, pages 2813–2821, 2017.

[42] Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database of handwritten digits.

1998.

[43] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in

natural images with unsupervised feature learning. In NIPS Workshop, 2011.

[44] A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[45] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++:

Improving the pixelcnn with discretized logistic mixture likelihood and other modi­

fications. In ICLR, 2017.

[46] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko.

Semi­supervised learning with ladder networks. In NIPS, 2015.

[47] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale.

In ICLR, 2017.

[48] S. Moosavi­Dezfooli, A. Fawzi, and P. Frossard. Deepfool: A simple and accurate

method to fool deep neural networks. In IEEE CVPR, 2016.

[49] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia object image li­

brary (coil­20). 1996.

53

	誌謝
	Acknowledgements
	摘要
	Abstract
	Introduction
	Backgrounds
	Deep Generative Model
	Generative Adversarial Network
	Wasserstein GAN
	Semi-Supervised Learning with GANs
	Robust Issue of Neural Networks
	Novelty Detection by Reconstruction Method
	Related Works

	Proposed Method-DSGAN
	Formulation
	Case Study on Synthetic Data and MNIST
	Case Study on Various Unseen Data Generation

	Discussions about the objective function of DSGAN
	Tricks for Stable Training
	Appendix: More Results for Case Study

	Theoretical Results
	Applications
	Semi-Supervised Learning
	Robustness Enhancement of Deep Networks
	Novelty Detection

	Experiments
	DSGAN in Semi-Supervised Learning
	Datasets: MNIST, SVHN, and CIFAR-10
	Main Results
	Appendix: Experimental Details

	DSGAN in Robustness Enhancement of Deep Networks
	Experiments Settings
	Main Results
	Appendix: Experimental Details

	DSGAN in Novelty Detection
	Main Results
	Experimental Details

	Conclusions
	Bibliography

