請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7516完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張豐丞 | |
| dc.contributor.author | Lan-Ting Chang | en |
| dc.contributor.author | 張嵐婷 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:45:23Z | - |
| dc.date.available | 2021-08-13 | |
| dc.date.available | 2021-05-19T17:45:23Z | - |
| dc.date.copyright | 2018-08-13 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-07 | |
| dc.identifier.citation | [1] J.Garcı, Assessment of the decrease of CO2 emissions in the construction field through the selection of materials : Practical case study of three houses of low environmental impact, 41 (2006) 902–909. doi:10.1016/j.buildenv.2005.04.006.
[2] J.P.Cowan, Handbook of Environmental Acoustics, Van Nostrand Reinhold, New York, USA, 1994. [3] E.Nemeth, N.Pieretti, S.A.Zollinger, N.Geberzahn, J.Partecke, H.Brumm, A.C.Miranda, Bird song and anthropogenic noise : vocal constraints may explain why birds sing higher-frequency songs in cities Bird song and anthropogenic noise : vocal constraints may explain why birds sing higher-frequency songs in cities, Proc. R. Soc. B Biol. Sci. 280 (2013) 20122798. doi:10.1098/rspb.2012.2798. [4] A.A.Klyosov, Wood plastic Composites, 2007. doi:10.1002/9780470165935. [5] C.K.Chau, F.W.H.Yik, W.K.Hui, H.C.Liu, H.K.Yu, Environmental impacts of building materials and building services components for commercial buildings in Hong Kong, J. Clean. Prod. 15 (2007) 1840–1851. doi:10.1016/j.jclepro.2006.10.004. [6] C.J.Yu, J.Kang, Environmental impact of acoustic materials in residential buildings, Build. Environ. 44 (2009) 2166–2175. doi:10.1016/j.buildenv.2009.03.013. [7] J.Zhao, X.M.Wang, J.M.Chang, Y.Yao, Q.Cui, Sound insulation property of wood-waste tire rubber composite, Compos. Sci. Technol. 70 (2010) 2033–2038. doi:10.1016/j.compscitech.2010.03.015. [8] N.H.Wong, A.Y.Kwang Tan, Y.Chen, K.Sekar, P.Y.Tan, D.Chan, K.Chiang, N.C.Wong, Thermal evaluation of vertical greenery systems for building walls, Build. Environ. 45 (2010) 663–672. doi:10.1016/j.buildenv.2009.08.005. [9] M.E.Nilson, J.Bengtsson, R.Klæboe, eds., Environmental Methods for Transport Noise Reduction, Taylor & Francis Group, LLC, Boca Raton, 2015. doi:10.1201/b17606-9. [10] Z.Azkorra, G.Pérez, J.Coma, L.F.Cabeza, S.Bures, J.E.Álvaro, A.Erkoreka, M.Urrestarazu, Evaluation of green walls as a passive acoustic insulation system for buildings, Appl. Acoust. 89 (2015) 46–56. doi:10.1016/j.apacoust.2014.09.010. [11] M.J.M.Davis, M.J.Tenpierik, F.R.Ramírez, M.E.Pérez, More than just a Green Facade: The sound absorption properties of a vertical garden with and without plants, Build. Environ. 116 (2017) 64–72. doi:10.1016/j.buildenv.2017.01.010. [12] R.M.Pulselli, E.Simoncini, F.M.Pulselli, S.Bastianoni, Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability, Energy Build. 39 (2007) 620–628. doi:10.1016/j.enbuild.2006.10.004. [13] A.Lawrence, Acoustics and the Built Environment, Elsevier Science Publishers LTD, London, England, 1989. [14] International Organization for Standardization, ISO 10534-2, Acoustics- Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes, Int. Stand. (2001). doi:ISO 10534-2:1998(E). [15] ISO 354, Acoustics — Measurement of sound absorption in a reverberation room, 2003. [16] ASTM International, ASTM C423-17. Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, Annu. B. ASTM Stand. (2017) 11. doi:10.1520/C0423-17. [17] J.P.Arenas, M.J.Crocker, Recent Trends in Porous Sound-Absorbing Materials, Sound Vib. (2010) 12–17. http://www.sandv.com/downloads/1007croc.pdf. [18] U.Berardi, G.Iannace, Acoustic characterization of natural fibers for sound absorption applications, Build. Environ. 94 (2015) 840–852. doi:10.1016/j.buildenv.2015.05.029. [19] J.Faustino, L.Pereira, S.Soares, D.Cruz, A.Paiva, H.Varum, J.Ferreira, J.Pinto, Impact sound insulation technique using corn cob particleboard, Constr. Build. Mater. 37 (2012) 153–159. doi:10.1016/j.conbuildmat.2012.07.064. [20] C.Wassilieff, Sound absorption of wood-based materials, Appl. Acoust. 48 (1996) 339–356. doi:10.1016/0003-682X(96)00013-8. [21] F.D’Alessandro, F.Asdrubali, N.Mencarelli, Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications, Build. Environ. 94 (2015) 913–923. doi:10.1016/j.buildenv.2015.06.004. [22] V.Bucur, Acoustics of Wood, Mater. Sci. Forum. 210–213 (1996) 101–108. doi:10.4028/www.scientific.net/MSF.210-213.101. [23] T.VanRenterghem, D.Botteldooren, In-situ measurements of sound propagating over extensive green roofs, Build. Environ. 46 (2011) 729–738. doi:10.1016/j.buildenv.2010.10.006. [24] H.S.Yang, J.Kang, M.S.Choi, Acoustic effects of green roof systems on a low-profiled structure at street level, Build. Environ. 50 (2012) 44–55. doi:10.1016/j.buildenv.2011.10.004. [25] D.Lelievre, T.Colinart, P.Glouannec, Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses, Energy Build. 84 (2014) 617–627. doi:10.1016/j.enbuild.2014.09.013. [26] F.Asdrubali, S.Schiavoni, K.V.Horoshenkov, A Review of Sustainable Materials for Acoustic Applications, Build. Acoust. 19 (2012) 283–311. doi:10.1260/1351-010X.19.4.283. [27] Z.Hong, L.Bo, H.Guangsu, H.Jia, A novel composite sound absorber with recycled rubber particles, J. Sound Vib. 304 (2007) 400–406. doi:10.1016/j.jsv.2007.02.024. [28] S.Kazemi Najafi, Use of recycled plastics in wood plastic composites - A review, Waste Manag. 33 (2013) 1898–1905. doi:10.1016/j.wasman.2013.05.017. [29] A.Ashori, Wood plastic composites as promising green-composites for automotive industries!, Bioresour. Technol. 99 (2008) 4661–4667. doi:10.1016/j.biortech.2007.09.043. [30] C.Clemons, Wood plastic composites in the United States: The interfacing of two industries, For. Prod. J. 52 (2002) 10–18. doi:10.1016/S0034-3617(06)71186-9. [31] O.Faruk, A.K.Bledzki, H.P.Fink, M.Sain, Biocomposites reinforced with natural fibers: 2000-2010, Prog. Polym. Sci. 37 (2012) 1552–1596. doi:10.1016/j.progpolymsci.2012.04.003. [32] A.Arbelaiz, B.Fernández, J.A.Ramos, A.Retegi, R.Llano-Ponte, I.Mondragon, Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling, Compos. Sci. Technol. 65 (2005) 1582–1592. doi:10.1016/j.compscitech.2005.01.008. [33] J.G.Gwon, S.Y.Lee, S.J.Chun, G.H.Doh, J.H.Kim, Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites, Compos. Part A Appl. Sci. Manuf. 41 (2010) 1491–1497. doi:10.1016/j.compositesa.2010.06.011. [34] M.A.Al-Maadeed, Y.M.Shabana, P.N.Khanam, Processing, characterization and modeling of recycled polypropylene/glass fibre/wood flour composites, Mater. Des. 58 (2014) 374–380. doi:10.1016/j.matdes.2014.02.044. [35] H.Jiang, D.P.Kamdem, Mechanical properties of poly (vinyl chloride)/wood flour/glass fiber hybrid composites, J. Vinyl …. 9 (2003) 138–145. http://onlinelibrary.wiley.com/doi/10.1002/vnl.10075/abstract. [36] M.Valente, F.Sarasini, F.Marra, J.Tirillò, G.Pulci, Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization, Compos. Part A Appl. Sci. Manuf. 42 (2011) 649–657. doi:10.1016/j.compositesa.2011.02.004. [37] K.B.Adhikary, S.Pang, M.P.Staiger, Dimensional stability and mechanical behaviour of wood plastic composites based on recycled and virgin high-density polyethylene (HDPE), Compos. Part B Eng. 39 (2008) 807–815. doi:10.1016/j.compositesb.2007.10.005. [38] A.Ashori, A.Nourbakhsh, Characteristics of wood-fiber plastic composites made of recycled materials, Waste Manag. 29 (2009) 1291–1295. doi:10.1016/j.wasman.2008.09.012. [39] S.B.Elvy, G.R.Dennis, L.T.Ng, Effects of coupling agent on the physical properties of wood-polymer composites, J. Mater. Process. Tech. 48 (1995) 365–371. doi:10.1016/0924-0136(94)01670-V. [40] Y.Cui, S.Lee, B.Noruziaan, M.Cheung, J.Tao, Fabrication and interfacial modification of wood/recycled plastic composite materials, Compos. Part A Appl. Sci. Manuf. 39 (2008) 655–661. doi:10.1016/j.compositesa.2007.10.017. [41] X.Xu, H.Wang, Y.Sun, J.Han, R.Huang, X.Zhan, Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene, J. Clean. Prod. 187 (2018) 215–221. doi:10.1016/j.jclepro.2018.03.174. [42] B.Neyciyani, S.Kazemi Najafi, I.Ghasemi, Influence of foaming and carbon nanotubes on sound transmission loss of wood fiber-low density polyethylene composites, J. Appl. Polym. Sci. 134 (2017). doi:10.1002/app.45096. [43] Y.Miki, Acoustical properties of porous materials - Generalizations of empirical models, Jounral Acoust. Soc. Japan. 11 (1990) 25–28. doi:10.1250/ast.11.25. [44] A.D.M.Guzman, M.G.T.Munno, Design of a brick with sound absorption properties based on plastic waste sawdust, IEEE Access. 3 (2015) 1260–1271. doi:10.1109/ACCESS.2015.2461536. [45] M.Köhler, Green facades-a view back and some visions, Urban Ecosyst. 11 (2008) 423–436. doi:10.1007/s11252-008-0063-x. [46] C.Y.Jim, H.He, Estimating heat flux transmission of vertical greenery ecosystem, Ecol. Eng. 37 (2011) 1112–1122. doi:10.1016/j.ecoleng.2011.02.005. [47] M.Schmidt, Energy saving strategies through the greening of buildings the example of the Institute of Physics of the Humboldt-University in Berlin- Adlershof, Germany, RIO 3 - World Clim. Energy Event, 1-5 December. 2002 (2003) 481–487. http://www.gebaeudekuehlung.de/Rio2003.pdf%5Cnhttp://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEcQFjAA&url=http://www.waterforalllife.org/documents/Marco_Schmidt.pdf&ei=iXnJT-mLMoqm9ATCpoiPDw&usg=AFQjCNHi-Ohq_lsexFCeTIYyhLxEDA6VMA. [48] O.Barbosa, J.A.Tratalos, P.R.Armsworth, R.G.Davies, R.A.Fuller, P.Johnson, K.J.Gaston, Who benefits from access to green space? A case study from Sheffield, UK, Landsc. Urban Plan. 83 (2007) 187–195. doi:10.1016/j.landurbplan.2007.04.004. [49] G.Pérez, J.Coma, C.Barreneche, A.DeGracia, M.Urrestarazu, S.Burés, L.F.Cabeza, Acoustic insulation capacity of Vertical Greenery Systems for buildings, Appl. Acoust. 110 (2016) 218–226. doi:10.1016/j.apacoust.2016.03.040. [50] M.Manso, J.Castro-Gomes, Green wall systems: A review of their characteristics, Renew. Sustain. Energy Rev. 41 (2015) 863–871. doi:10.1016/j.rser.2014.07.203. [51] K.Perini, P.Rosasco, Cost-benefit analysis for green fa??ades and living wall systems, Build. Environ. 70 (2013) 110–121. doi:10.1016/j.buildenv.2013.08.012. [52] P.F.Sommerhuber, J.L.Wenker, S.Rüter, A.Krause, Life cycle assessment of wood plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option, Resour. Conserv. Recycl. 117 (2017) 235–248. doi:10.1016/j.resconrec.2016.10.012. [53] ASTM International, ASTM D792-13. Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, Annu. B. ASTM Stand. (2008) 6. doi:10.1520/D0792-08.2. [54] ASTM, ASTM D638-03: Standard Test Method for Tensile Properties of Plastics, 2004. doi:10.1520/D0638-03. [55] D.Olynyk, T.D.Northwood, Comparison of Reverberation‐Room and Impedance‐Tube Absorption Measurements, J. Acoust. Soc. Am. 36 (1964) 2171. [56] M.Mcgrory, D.C.Cirac, O.Gaussen, D.Cabrera, G.Engineers, Sound absorption coefficient measurement : Re-examining the relationship between impedance tube and reverberant room methods, Proc. Acoust. 2012 - Fremantle. (2012) 1–8. [57] T.J.Schultz, Diffusion in reverberation rooms, J. Sound Vib. 16 (1971) 17–28. doi:10.1016/0022-460X(71)90392-0. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7516 | - |
| dc.description.abstract | 回收塑膠製木塑複合材料(recycled plastic based wood plastic composites, rWPCs)被期望於取代傳統的高碳足跡材料,為了擴展rWPCs的應用領域,考慮其具有多孔材料的特性,因此對於其聲學性質進行研究,且考量到其機械強度,在本實驗中將rWPCs作為植生牆(LWS)的支撐體,用以發展低環境影響的全頻吸音構造。首先本實驗以阻抗管測量rWPCs及其與常見聲學結構的吸音效果進行較小尺度的測試,接著在迴響室中測量rWPCs和其作為LWS支撐體整體結構的吸音係數,以便了解其於實際應用上的吸音性能。結果顯示,rWPCs在中低頻範圍內具有中等吸音性能,其中空結構有利於輕量設計,而裝飾或功能表面紋路均有利於吸聲。另一方面,聲學結構的研究顯示小於3cm的空氣層和低穿孔面積(小於1%)對於rWPCs吸音改善具有相當的效果。最後,以rWPCs為支撐系統的LWS具有全頻範圍吸音能力,並且考慮支撐體、植生牆設計和植生覆蓋率對於聲學性質是必要的。 | zh_TW |
| dc.description.abstract | Recycled plastic based wood plastic composites (rWPCs) is expected to replace conventional high carbon foot print materials. To expand the application field of rWPCs, considering its porous structure, the acoustic properties of rWPCs have been examined. Also, rWPCs has sufficient mechanical strength, therefore was applied as supporting system for living wall system (LWS) to create sound absorption element with low environmental impact in this study. First, the sound absorption coefficient of rWPCs and its combination with several common acoustic mountings was measured by impedance tube. Second, selected rWPCs and LWS with rWPCs integrated as supporting system were tested in reverberation room for understanding their sound absorption performance within a practical scale. It was found that rWPCs had medium sound absorption property at mid-low frequency range with its hollow structure beneficial to lighter design, while decoration or functional surface patterns were both favorable for sound absorption. On the other hand, the result of acoustic mountings suggested that air gap less than 3 cm and perforation area of less than 1% would be sufficiently effective for rWPCs sound absorption improvement. At last, LWS with rWPCs as supporting system was successful combination for full frequency range sound absorption, and for acoustic purpose, it would be necessary to take supporting system into account as well as garden module design and coverage rate. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:45:23Z (GMT). No. of bitstreams: 1 ntu-107-R05625033-1.pdf: 7224904 bytes, checksum: 25e99bd309ed0fd14b783a01fe94baca (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
Acknowledgement i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix 1. Introduction 1 2. Literature review 4 2.1. Acoustics for urban building environment 4 2.2. Wood plastic composites and its acoustic potential 18 2.2.1. Wood plastic Composites 18 2.2.2. WPCs and acoustics 23 2.3. Green walls and acoustic 26 3. Part A: Recycled material based WPCs and Acoustics 30 3.1. Materials and Methods 30 3.1.1. Materials and sample preparation 30 3.1.2. Sound absorption measurement 34 3.1.3. Surface and morphology study 35 3.2. Results and discussion 35 3.2.1. Uniformity of specimen 35 3.2.2. Effect of structure on sound absorption property 40 3.2.3. Effect of adopting acoustic methods on sound absorption property 42 3.2.4. Effect of surface pattern to sound absorption property 46 3.3. Conclusion: Part A 49 4. Part B: Green wall acoustics with rWPCs supporting system 51 4.1. Materials and Methods 52 4.2. Results and discussion 57 4.2.1. Sound absorption of various supporting systems 57 4.2.2. Sound absorption of LWS with rWPCs as supporting system 62 4.3. Conclusion: Part B 68 5. Summary 70 5.1. General conclusion 70 5.2. Future work 72 REFERENCE 73 | |
| dc.language.iso | en | |
| dc.title | 以木塑材建構植生牆之吸音性能探討 | zh_TW |
| dc.title | Sound Absorption Performance of Green Walls Constructed with Wood Plastic Composites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 龍暐,林芳銘,卓志隆,楊德新 | |
| dc.subject.keyword | 木塑材,吸音性能,植生牆,阻抗管,餘響室, | zh_TW |
| dc.subject.keyword | wood plastic composites (WPCs),sound absorption,living wall system (LWS),impedance tube,reverberation room, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201802614 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 7.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
