Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74907
Title: 擬譜補償微分運算子之積分預處理矩陣及於微分方程之應用
Integration Preconditioning Matrices for Pseudospectral Penalty Differentiation Operators with Applications to Differential Equations
Authors: Po-Yu Lin
林柏宇
Advisor: 林太家
Keyword: 譜/擬譜法,補償邊界條件,積分預處理,混和微分運算子,多域格式,片段連續,上風通量,
spectral/pseudospectral methods,penalty boundary conditions,integration preconditioning,mixed differential operators,multidomain schemes,piecewise continuous,upwind flux,
Publication Year : 2019
Degree: 碩士
Abstract: 對於解牽涉到純粹微分運算子d^m/dx^m的微分方程式,譜與擬譜積分預處理矩陣是有效的工具。在本論文的第一部分當中,對於在Gauss-Radau-Legendre網格點上的混和微分運算子d/dr a(r) d/dr,我們採用了一種可分離的建構框架,來明確地建構條件好的逆擬譜補償矩陣。對於在極座標系統中變係數二階微分方程式,這種逆矩陣可以作為解運算子,或是有效的預處理運算子。而在本論文的第二部分當中,對於在Gauss-Lobatto-Legendre網格點上的一階微分運算子d/dx,我們明確地建構條件好的多域逆擬譜補償矩陣。對於直角坐標系統上具有分段連續係數的一階微分方程式,這些逆矩陣可以作為解運算子,或是有效的預處理運算子。
Spectral and pseudospectral integration preconditioning matrices are effective tools for solving differential equations involving pure differential operators d^m/dx^m. In the first part of this thesis we adopt a separable construction framework to explicitly construct a well-conditioned inverse pseudospectral penalty matrix for the mixed differential operator d/dr a(r) d/dr on Gauss-Radau-Legendre grid points. This inverse matrix can be used either as a solution operator or an effective preconditioner for variable coefficient second order differential equations in polar coordinate system. In the second part of this thesis we explicitly construct well-conditioned multidomain inverse pseudospectral penalty matrices for the first order differential operator d/dx on Gauss-Lobatto-Legendre grid points. These inverse matrices can be used as either solution operators or effective preconditioners for first order differential equations with a piecewise continuous coefficient in Cartesian coordinate system.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74907
DOI: 10.6342/NTU201904175
Fulltext Rights: 有償授權
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
836.45 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved