Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林太家
dc.contributor.authorPo-Yu Linen
dc.contributor.author林柏宇zh_TW
dc.date.accessioned2021-06-17T09:10:01Z-
dc.date.available2020-10-17
dc.date.copyright2019-10-17
dc.date.issued2019
dc.date.submitted2019-10-01
dc.identifier.citation[1] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, 2007.
[2] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin Heidelberg, 2007.
[3] H. Chen, Y. Su and B. D. Shizgal, A direct spectral collocation Poisson solver in polar and cylindrical coordinates, J. Comput. Phys., 160 (2000), 453–469.
[4] M. Carpenter and D. Gottlieb, Spectral methods on arbitrary grids, J. Comput. Phys., 129 (1996), 74-86.
[5] E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A, 37 (2004), 657-675.
[6] E. H. Doha and W. M. Abd-Elhameed, Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials, SIAM J. Sci. Comput., 24 (2002), 548-571.
[7] E. H. Doha and W. M. Abd-Elhameed, Efficient spectral ultraspherical-dual-Petrov-Galerkin algorithms for direct solution of (2n+1)th-order linear differential equations, Math. Comput. Simulation, 79 (2009), 3221-3242.
[8] W. Don and D. Gottlieb, The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points, SIAM J. Numer Anal., 31 (1994), 1519-1524.
[9] H. Eisen, W. Heinrichs and K. Witsch, Spectral collocation methods and polar coordinate singularities, J. Comput. Phys., 96 (1991), 241-257.
[10] E. M. E. Elbarbary, Integration preconditioning matrix for ultraspherical pseudospectral operators, SIAM J. Sci. Comput., 28 (2006), 1186-1201.
[11] D. Funaro and D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations, Math. Comp., 51 (1988), 599-613.
[12] D. Funaro and D. Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment, Math. Comp., 57 (1991), 585-596.
[13] F. Ghoreishi and S. M. Hosseini, A preconditioned implementation of pseudospectral methods on arbitrary grids, Appl. Math. Comput., 148 (2004), 15-34.
[14] J. S. Hesthaven, Integration preconditioning of pseudospectral operators. I. basic linear operators, SIAM J. Numer. Anal., 35 (1998), 1571-1593.
[15] J. S. Hesthaven, Spectral penalty methods, Appl. Numer. Math., 33 (2000), 23-41.
[16] J. S. Hesthaven and D. Gottlieb, A stable penalty method for the compressible Navier–Stokes equations: I. open boundary conditions, SIAM J. Sci. Comput., 17 (1996), 579-612.
[17] J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge, UK, 2007.
[18] W. Huang and D. M. Sloan, Pole condition for singular problems: The pseudospectral approximation, J. Comput. Phys., 107 (1993), 254–261.
[19] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Review, 55 (2013), 462-489.
[20] S. A. Orszag, Numerical simulation of incompressible flows within simple boundaries: accuracy, J. Fluid Mech., 49 (1971), 75-112.
[21] S. A. Orszag, Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50 (1971), 689-703.
[22] J. Shen, Efficient spectral-Galerkin method I. Direct solves for the second order and fourth order equations using Legendre polynomials, SIAM J. Comput., 15 (1994), 1489-1505.
[23] J. Shen, Efficient spectral-Galerkin method II. Direct solvers of second and fourth order equations by using Chebyshev polynomials, SIAM J. SCI. Comput., 16 (1995), 74-87.
[24] J. Shen, Efficient spectral Galerkin method III. Polar and cylindrical geometries, SIAM J. SCI. Comput., 18 (1997), 1583-1604.
[25] J. Shen, A new dual-petrov-Galerkin method for third and higher odd-order differential equations: Application to the KdV equation, SIAM J. Numer. Anal., 41 (2003), 1595-1619.
[26] J. Shen and L. L. Wang, Legendre and Chebyshev-dual-Petrov-Galerkin methods for hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3785-3797.
[27] J. Shen and L. L. Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys., 5 (2009), 195-241.
[28] J. Shen, T. Tang and L. L. Wang, Spectral Methods: Algorithms, Analysis, and Applications, Springer, Heidelberg, 2009.
[29] J. Shen, Y. Wang and J. Xia, Fast structured direct spectral methods for differential equations with variable coefficients, I. the one dimensional case, SIAM J. Sci. Comput., 38 (2016), A28-A54.
[30] L. L. Wang, M. D. Samson and X. Zhao, A well-conditioned collocation method using a pseudospectral integration matrix, SIAM J. Sci. Comput., 36 (2014), A907-A929.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74907-
dc.description.abstract對於解牽涉到純粹微分運算子d^m/dx^m的微分方程式,譜與擬譜積分預處理矩陣是有效的工具。在本論文的第一部分當中,對於在Gauss-Radau-Legendre網格點上的混和微分運算子d/dr a(r) d/dr,我們採用了一種可分離的建構框架,來明確地建構條件好的逆擬譜補償矩陣。對於在極座標系統中變係數二階微分方程式,這種逆矩陣可以作為解運算子,或是有效的預處理運算子。而在本論文的第二部分當中,對於在Gauss-Lobatto-Legendre網格點上的一階微分運算子d/dx,我們明確地建構條件好的多域逆擬譜補償矩陣。對於直角坐標系統上具有分段連續係數的一階微分方程式,這些逆矩陣可以作為解運算子,或是有效的預處理運算子。zh_TW
dc.description.abstractSpectral and pseudospectral integration preconditioning matrices are effective tools for solving differential equations involving pure differential operators d^m/dx^m. In the first part of this thesis we adopt a separable construction framework to explicitly construct a well-conditioned inverse pseudospectral penalty matrix for the mixed differential operator d/dr a(r) d/dr on Gauss-Radau-Legendre grid points. This inverse matrix can be used either as a solution operator or an effective preconditioner for variable coefficient second order differential equations in polar coordinate system. In the second part of this thesis we explicitly construct well-conditioned multidomain inverse pseudospectral penalty matrices for the first order differential operator d/dx on Gauss-Lobatto-Legendre grid points. These inverse matrices can be used as either solution operators or effective preconditioners for first order differential equations with a piecewise continuous coefficient in Cartesian coordinate system.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:10:01Z (GMT). No. of bitstreams: 1
ntu-108-R06246011-1.pdf: 856524 bytes, checksum: a9819043a341212f1707b35da6e7adfa (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
2 An inverse pseudospectral penalty matrix for the mixed differential operator d/dr a(r) d/dr in polar coordinate system 6
2.1 Formulation 6
2.1.1 Basic concepts of the Legendre pseudospectral method 6
2.1.2 Inverse pseudospectral penalty matrices for the d/dx operator 11
2.1.3 Invertible pseudospectral penalty matrix for the d/dx a(x) d/dx operator 15
2.1.4 An inverse matrix for the L operator 21
2.1.5 Applications to Poisson equations 28
2.2 Numerical validations 33
2.2.1 First order differential equations 34
2.2.2 Second order differential equations 35
2.2.3 Discussions 39
3 Multidomain inverse pseudospectral penalty matrices for the first order differential operator d/dx in Cartesian coordinate system 41
3.1 Formulation 41
3.1.1 Basic concepts of the Legendre pseudospectral method 41
3.1.2 Multidomain schemes for discretizing d/dx 48
3.2 Numerical validations 56
3.2.1 First order differential equations u′ = f 57
3.2.2 First order differential equations u′ + au = f 58
3.2.3 Nonlinear first order differential equations u′ + F(u)u = f 66
4 Conclusions 67
Bibliography 68
dc.language.isoen
dc.title擬譜補償微分運算子之積分預處理矩陣及於微分方程之應用zh_TW
dc.titleIntegration Preconditioning Matrices for Pseudospectral Penalty Differentiation Operators with Applications to Differential Equationsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧君豪,李勇達
dc.subject.keyword譜/擬譜法,補償邊界條件,積分預處理,混和微分運算子,多域格式,片段連續,上風通量,zh_TW
dc.subject.keywordspectral/pseudospectral methods,penalty boundary conditions,integration preconditioning,mixed differential operators,multidomain schemes,piecewise continuous,upwind flux,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201904175
dc.rights.note有償授權
dc.date.accepted2019-10-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
836.45 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved