Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳錫侃(Shyi-Kaan Wu)
dc.contributor.authorYung-Chien Huangen
dc.contributor.author黃詠騫zh_TW
dc.date.accessioned2021-06-17T09:05:44Z-
dc.date.available2025-02-04
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-15
dc.identifier.citation[1] K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews 31 (1986) 93-114.
[2] K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, 1999, pp. 1-96.
[3] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.
[4] S. Sarkar, X.B. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x, Phys. Rev. Lett. 95 (2005) 205702.
[5] X.B. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects, MRS Bull. 34 (2009) 838-846.
[6] R. Vasseur, T. Lookman, Effects of disorder in ferroelastics: A spin model for strain glass, Phys. Rev. B 81 (2010) 094107.
[7] X.B. Ren, Y. Wang, Y.M. Zhou, Z. Zhang, D. Wang, G.L. Fan, K. Otsuka, T. Suzuki, Y.C. Ji, J. Zhang, Y. Tian, S. Hou, X.D. Ding, Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass, Philos. Mag. 90 (2010) 141-157.
[8] D. Wang, Z. Zhang, J.A. Zhang, Y.M. Zhou, Y. Wang, X.D. Ding, Y.Z. Wang, X.B. Ren, Strain glass in Fe-doped Ti-Ni, Acta Mater. 58 (2010) 6206-6215.
[9] X.B. Ren, Strain Glass and Strain Glass Transition, Disorder and Strain-Induced Complexity in Functional Materials, Springer, 2012, pp. 201-225.
[10] C. Chien, C.S. Tsao, S.K. Wu, C.Y. Chang, P.C. Chang, Y.K. Kuo, Characteristics of the strain glass transition in as-quenched and 250 °C early-aged Ti48.7Ni51.3 shape memory alloy, Acta Mater. 120 (2016) 159-167.
[11] Y.C. Ji, X.D. Ding, T. Lookman, K. Otsuka, X.B. Ren, Heterogeneities and strain glass behavior: Role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys, Phys. Rev. B 87 (2013) 104110.
[12] G. Goerigk, H.G. Haubold, O. Lyon, J.P. Simon, Anomalous small-angle X-ray scattering in materials science, J. Appl. Crystallogr. 36 (2003) 425-429.
[13] H.G. Haubold, X.H. Wang, G. Goerigk, W. Schilling, In situ anomalous small-angle X-ray scattering investigation of carbon-supported electrocatalysts, J. Appl. Crystallogr. 30 (1997) 653-658.
[14] T. Vad, H.G. Haubold, N. Waldofner, H. Bonnemann, Three-dimensional Pt-nanoparticle networks studied by anomalous small-angle X-ray scattering and X-ray absorption spectroscopy, J. Appl. Crystallogr. 35 (2002) 459-470.
[15] C.F. Yu, S. Koh, J.E. Leisch, M.F. Toney, P. Strasser, Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS), Faraday Discuss 140 (2008) 283-296.
[16] O. Glatter, O. Kratky, Small Angle X-ray Scattering, Academic Press, 1982, p. 222.
[17] T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys, Acta Mater. 58 (2010) 248-260.
[18] A. Biswas, D. Sen, S.K. Sarkar, Sarita, S. Mazumder, D.N. Seidman, Temporal evolution of coherent precipitates in an aluminum alloy W319: A correlative anisotropic small angle X-ray scattering, transmission electron microscopy and atom-probe tomography study, Acta Mater. 116 (2016) 219-230.
[19] F. De Geuser, M.J. Styles, C.R. Hutchinson, A. Deschamps, High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys, Acta Mater. 101 (2015) 1-9.
[20] A. Deschamps, L. Lae, P. Guyot, In situ small-angle scattering study of the precipitation kinetics in an Al-Zr-Sc alloy, Acta Mater. 55 (2007) 2775-2783.
[21] C.R. Hutchinson, F. de Geuser, Y. Chen, A. Deschamps, Quantitative measurements of dynamic precipitation during fatigue of an Al-Zn-Mg-(Cu) alloy using small-angle X-ray scattering, Acta Mater. 74 (2014) 96-109.
[22] M. Nicolas, A. Deschamps, Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments, Acta Mater. 51 (2003) 6077-6094.
[23] C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo, Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys, Acta Mater. 54 (2006) 4621-4631.
[24] C.S. Tsao, E.W. Huang, M.H. Wen, T.Y. Kuo, S.L. Jeng, U.S. Jeng, Y.S. Sun, Phase transformation and precipitation of an Al-Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering, J. Alloys Compd. 579 (2013) 138-146.
[25] Y. Kojima, Project of platform science and technology for advanced magnesium alloys, Mater. Trans. 42 (2001) 1154-1159.
[26] Y. Kojima, S. Kamado, Fundamental magnesium researches in Japan, Mater. Sci. Forum 488-489 (2005) 9-16.
[27] H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, M. Niemeyer, Alloy development, processing and applications in magnesium lithium alloys, Mater. Trans. 42 (2001) 1160-1166.
[28] K. Higashi, J. Wolfenstine, Microstructural Evolution during Superplastic Flow of a Binary Mg-8.5 Wt Percent Li Alloy, Mater. Lett. 10 (1991) 329-332.
[29] M. Kawasaki, K. Kubota, K.I. Higashi, T.G. Langdon, Flow and cavitation in a quasi-superplastic two-phase magnesium-lithium alloy, Mat. Sci. Eng. A 429 (2006) 334-340.
[30] P. Metenier, G. Gonzalezdoncel, O.A. Ruano, J. Wolfenstine, O.D. Sherby, Superplastic Behavior of a Fine-Grained 2-Phase Mg-9wt-Percent Li Alloy, Mat. Sci. Eng. A 125 (1990) 195-202.
[31] C.T. Chiang, S. Lee, C.L. Chu, Rolling route for refining grains of super light Mg-Li alloys containing Sc and Be, T. Nonferr. Metal Soc. 20 (2010) 1374-1379.
[32] Z.X. Kang, K. Lin, J.Y. Zhang, Characterisation of Mg-Li alloy processed by solution treatment and large strain rolling, Mater. Sci. Tech. 32 (2016) 498-506.
[33] X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, C.L. Cui, Microstructures and properties of superlight Mg-Li-Al-Zn wrought alloys, J. Alloys Compd. 486 (2009) 722-725.
[34] G. Sheng, M. Staiger, M. Kral, Enhancement of the properties of Mg-Li alloys by small alloying additions, Magnesium Technology, 2003, TMS.
[35] G.S. Song, M. Staiger, M. Kral, Some new characteristics of the strengthening phase in beta-phase magnesium-lithium alloys containing aluminum and beryllium, Mat. Sci. Eng. A 371 (2004) 371-376.
[36] H.Y. Wu, Z.W. Gao, J.Y. Lin, C.H. Chiu, Effects of minor scandium addition on the properties of Mg-Li-Al-Zn alloy, J. Alloys Compd. 474 (2009) 158-163.
[37] L.B. Wu, C.L. Cui, R.Z. Wu, J.Q. Li, H.B. Zhan, M.L. Zhang, Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg-Li-Al-Zn-based alloy, Mat. Sci. Eng. A 528 (2011) 2174-2179.
[38] Z.J. Li, X.Y. Jing, Y. Yuan, M.L. Zhang, Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques, Corros. Sci. 63 (2012) 358-366.
[39] L.L. Shi, Y.J. Xu, K. Li, Z.P. Yao, S.Q. Wu, Effect of additives on structure and corrosion resistance of ceramic coatings on Mg-Li alloy by micro-arc oxidation, Curr. Appl. Phys. 10 (2010) 719-723.
[40] H. Zhang, G.C. Yao, S.L. Wang, Y.H. Liu, H.J. Luo, A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution, Surf. Coat. Tech. 202 (2008) 1825-1830.
[41] S.K. Wu, Y.H. Li, K.T. Chien, C. Chien, C.S. Yang, X-ray diffraction studies on cold-rolled/solid-solution treated alpha plus beta Mg-10.2Li-1.2Al-0.4Zn alloy, J. Alloys Compd. 563 (2013) 234-241.
[42] H.Y. Wu, J.Y. Lin, Z.W. Gao, H.W. Chen, Effects of age heat treatment and thermomechanical processing on microstructure and mechanical behavior of LAZ1010 Mg alloy, Mat. Sci. Eng. A 523 (2009) 7-12.
[43] C.C. Hsu, J.Y. Wang, S. Lee, Room Temperature Aging Characteristic of MgLiAlZn Alloy, Mater. Trans. 49 (2008) 2728-2731.
[44] T. Liu, S.D. Wu, S.X. Li, P.J. Li, Microstructure evolution of Mg-14% Li-1% Al alloy during the process of equal channel angular pressing, Mat. Sci. Eng. A 460 (2007) 499-503.
[45] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[46] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mat. Sci. Eng. A 375 (2004) 213-218.
[47] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim.-Sci. Mat. 31 (2006) 633-648.
[48] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM 67 (2015) 2254-2261.
[49] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy 16 (2014) 494-525.
[50] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2 (2014) 107-123.
[51] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1-93.
[52] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
[53] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74-78.
[54] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
[55] G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing, J. Alloys Compd. 647 (2015) 548-557.
[56] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater. 68 (2013) 526-529.
[57] F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743-5755.
[58] F. Otto, N.L. Hanold, E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics 54 (2014) 39-48.
[59] G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, J.W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics 69 (2016) 1-9.
[60] N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy, Intermetallics 59 (2015) 8-17.
[61] N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, M.A. Tikhonovsky, High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy, Mat. Sci. Eng. A 636 (2015) 188-195.
[62] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428-441.
[63] J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, Z.P. Lu, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics 55 (2014) 9-14.
[64] E.J. Pickering, R. Munoz-Moreno, H.J. Stone, N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scripta Mater. 113 (2016) 106-109.
[65] W. Zhou, L.M. Fu, P. Liu, X.D. Xu, B. Chen, G.Z. Zhu, X.D. Wang, A.D. Shan, M.W. Chen, Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy, Intermetallics 85 (2017) 90-97.
[66] B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258-268.
[67] A. Deschamps, Y. Brechet, Influence of predeformation and ageing of an Al-Zn-Mg alloy - II. Modeling of precipitation kinetics and yield stress, Acta Mater. 47(1) (1998) 293-305.
[68] A. Deschamps, F. Livet, Y. Brechet, Influence of predeformation on ageing in an Al-Zn-Mg alloy - I. Microstructure evolution and mechanical properties, Acta Mater. 47 (1998) 281-292.
[69] C.S. Tsao, T.L. Lin, M.S. Yu, delta ' precipitation in Al-9.7at%Li alloy using small-angle X-ray scattering, J. Alloys Compd. 289 (1999) 81-87.
[70] E.W. Huang, C.S. Tsao, M.H. Wen, T.Y. Kuo, S.Y. Tu, B.W. Wu, C.J. Su, U.S. Jeng, Resolution of structural transformation of intermediates in Al-Cu alloys during non-isothermal precipitation, J. Mater. Res. 29 (2014) 874-879.
[71] T. Dorin, A. Deschamps, F. De Geuser, W. Lefebvre, C. Sigli, Quantitative description of the T-1 formation kinetics in an Al-Cu-Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy, Philos. Mag. 94 (2014) 1012-1030.
[72] F. De Geuser, B. Malard, A. Deschamps, Microstructure mapping of a friction stir welded AA2050 Al-Li-Cu in the T8 state, Philos. Mag. 94 (2014) 1451-1462.
[73] M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, A. Deschamps, Characterisation of the composition and volume fraction of eta ' and eta precipitates in an Al-Zn-Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy, Acta Mater. 53 (2005) 2881-2892.
[74] P. Panagos, Y. Wang, D.G. McCartney, M. Li, B. Ghaffari, J.W. Zindel, J. Miao, S. Makineni, J.E. Allison, O. Shebanova, J.D. Robson, P.D. Lee, Characterising precipitate evolution in multi- component cast aluminium alloys using small-angle X-ray scattering, J. Alloys Compd. 703 (2017) 344-353.
[75] M. Prasher, D. Sen, Influence of aging on phase transformation and microstructure of Ni50.3Ti29.7Hf20 high temperature shape memory alloy, J. Alloys Compd. 615 (2014) 469-474.
[76] H.J. Xu, Z. Lu, S. Ukai, N. Oono, C.M. Liu, Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe-15Cr alloy powders with Ti and Zr additions, J. Alloys Compd. 693 (2017) 177-187.
[77] J. Saida, R. Yamada, P. Kozikowski, M. Imafuku, S. Sato, M. Ohnuma, Characterization of nano-quasicrystal-formation in correlation to the local structure in Zr-based metallic glasses containing Pd, J. Alloys Compd. 707 (2017) 46-50.
[78] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Hardening precipitation in a Mg-4Y-3RE alloy, Acta Mater. 51 (2003) 5335-5348.
[79] R. Ferragut, F. Moia, F. Fiori, D. Lussana, G. Riontino, Small-angle X-ray scattering study of the early stages of precipitation in a Mg-Nd-Gd (EV31) alloy, J. Alloys Compd. 495 (2010) 408-411.
[80] G. Barucca, R. Ferragut, F. Fiori, D. Lussana, P. Mengucci, F. Moia, G. Riontino, Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy, Acta Mater. 59 (2011) 4151-4158.
[81] W. Liu, W.L. Johnson, S. Schneider, U. Geyer, P. Thiyagarajan, Small-angle X-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy, Phys. Rev. B 59 (1999) 11755-11759.
[82] B. Rashkova, W. Prantl, R. Goergl, J. Keckes, S. Cohen, M. Bamberger, G. Dehm, Precipitation processes in a Mg-Zn-Sn alloy studied by TEM and SAXS, Mat. Sci. Eng. A 494 (2008) 158-165.
[83] A. Deschamps, M. Garcia, J. Chevy, B. Davo, F. De Geuser, Influence of Mg and Li content on the microstructure evolution of AlCuLi alloys during long-term ageing, Acta Mater. 122 (2017) 32-46.
[84] E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps, Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy, Acta Mater. 133 (2017) 172-185.
[85] B. Jones, BRUKER AXS, www. bruker-axs. com.
[86] L. Boldon, F. Laliberte, L. Liu, Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application, Nano Reviews 6 (2015) 25661.
[87] A. Deschamps, F. De Geuser, Quantitative Characterization of Precipitate Microstructures in Metallic Alloys Using Small-Angle Scattering, Metall. Mater. Trans. A 44A (2013) 77-86.
[88] A. Guinier, G. Fournet, Small-angle scattering of X-ray, John Wiley and Sons, New York, 1955.
[89] W.J. Buehler, R.C. Wiley, J.V. Gilfrich, Effect of Low-Temperature Phase Changes on Mechanical Properties of Alloys near Composition TiNi, J. Appl. Phys. 34 (1963) 1475.
[90] R. Nagarajan, K. Chattopadhyay, Intermetallic Ti2ni/Tini Nanocomposite by Rapid Solidification, Acta Metall. Mater. 42 (1994) 947-958.
[91] K. Otsuka, T. Kakeshita, Science and technology of shape-memory alloys. New developments, MRS Bull. 27 (2002) 91-100.
[92] K. Otsuka, T. Sawamura, K. Shimizu, C.M. Wayman, Characteristics of the martensitic transformation in TiNi and the memory effect, Metall. Trans. 2 (1971) 2583-2588.
[93] S. Miyazaki, S. Kimura, K. Otsuka, Shape-Memory Effect and Pseudoelasticity Associated with the R-Phase Transition in Ti-50.5 at-Percent-Ni Single-Crystals, Philos. Mag. A 57 (1988) 467-478.
[94] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic TiNi Martensite, Phys. Status Solidi A 5 (1971) 457.
[95] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater. 50 (2002) 4255-4274.
[96] D.Q. Xue, Y.M. Zhou, X.B. Ren, The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy, Intermetallics 19 (2011) 1752-1758.
[97] V. Pelosin, A. Riviere, Effect of thermal cycling on the R-phase and martensitic transformations in a Ti-rich NiTi alloy, Metall. Mater. Trans. A 29 (1998) 1175-1180.
[98] N. Resnina, S. Belyaev, Multi-stage martensitic transformations induced by repeated thermal cycling of equiatomic TiNi alloy, J. Alloys Compd. 486 (2009) 304-308.
[99] H.C. Lin, S.K. Wu, Determination of Heat of Transformation in a Cold-Rolled Martensitic TiNi Alloy, Metall. Trans. A 24 (1993) 293-299.
[100] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys, J. Phys.-Paris 43 (1982) 255-260.
[101] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50Ni47Fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos. Mag. A 47 (1983) 31-62.
[102] K.H. Eckelmeyer, Effect of Alloying on Shape Memory Phenomenon in Nitinol, Scripta Metall. Mater. 10 (1976) 667-672.
[103] J.E. Hanlon, S.R. Butler, R.J. Wasilewski, Effect of Martensitic Transformation on Electrical and Magnetic Properties of NiTi, T. Metall. Soc. AIME 239 (1967) 1323.
[104] M. Nishida, C.M. Wayman, Electron-Microscopy Studies of the Premartensitic Transformations in an Aged Ti-51 at-Percent-Ni Shape Memory Alloy, Metallography 21 (1988) 255-273.
[105] M. Nishida, C.M. Wayman, A. Chiba, Electron-Microscopy Studies of the Martensitic-Transformation in an Aged Ti-51 at-Percent-Ni Shape Memory Alloy, Metallography 21 (1988) 275-291.
[106] T. Saburi, T. Tatsumi, S. Nenno, Effects of Heat-Treatment on Mechanical-Behavior of Ti-Ni Alloys, J. Phys.-Paris 43 (1982) 261-266.
[107] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall. Mater. 34 (1986) 2045-2051.
[108] T. Tadaki, Y. Nakata, K. Shimizu, Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy, T. Jpn I. Met. 28 (1987) 883-890.
[109] C.M. Hwang, C.M. Wayman, Compositional Dependence of Transformation Temperatures in Ternary TiNiAl and TiNiFe Alloys, Scripta Metall. Mater. 17 (1983) 381-384.
[110] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, The Effects of Cold-Rolling on the Martensitic-Transformation of an Equiatomic TiNi Alloy, Acta Metall. Mater. 39 (1991) 2069-2080.
[111] S.H. Chang, S.K. Wu, G.H. Chang, Grain size effect on multiple-stage transformations of a cold-rolled and annealed equiatomic TiNi alloy, Scripta Mater. 52 (2005) 1341-1346.
[112] T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990, p. 36.
[113] T.A. Schroeder, C.M. Wayman, Pseudoelastic Effects in Cu-Zn Single-Crystals, Acta Metall. Mater. 27 (1979) 405-417.
[114] W.J. Tang, Thermodynamic study of the low-temperature phase B19' and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys, Metall. Mater. Trans. A 28 (1997) 537-544.
[115] T. Fukuda, T. Kakeshita, T. Saburi, K. Kindo, T. Takeuchi, M. Honda, Y. Miyako, Negative temperature dependence of electrical resistivity in Ti-Ni alloys, Physica B 237 (1997) 609-611.
[116] X.B. Ren, Strain glass and ferroic glass - Unusual properties from glassy nano-domains, Phys. Status Solidi B 251 (2014) 1982-1992.
[117] D. Wang, Y.Z. Wang, Z. Zhang, X.B. Ren, Modeling Abnormal Strain States in Ferroelastic Systems: The Role of Point Defects, Phys. Rev. Lett. 105 (2010) 205702.
[118] B.E. Vugmeister, M.D. Glinchuk, Dipole Glass and Ferroelectricity in Random-Site Electric-Dipole Systems, Rev. Mod. Phys. 62 (1990) 993-1026.
[119] J.A. Mydosh, Spin Glasses, Taylor & Francis, London, 1993.
[120] J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, How 'spin ice' freezes, Nature 413 (2001) 48-51.
[121] Y. Wang, X.B. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy, Phys. Rev. Lett. 97 (2006) 225703.
[122] ASM Handbook, Alloy Phase Diagrams, vol. 3, ASM Int'l, Ohio, USA, 1992.
[123] F.H. Herbstein, B.L. Averbach, The Structure of Lithium-Magnesium Solid Solutions .1. Measurements on the Bragg Reflections, Acta Metall. Mater. 4 (1956) 407-413.
[124] A. Alamo, A.D. Banchik, Precipitation Phenomena in the Mg-31 at Percent Li-1 at Percent Al-Alloy, J. Mater. Sci. 15 (1980) 222-229.
[125] J.Y. Wang, Mechanical properties of room temperature rolled MgLiAlZn alloy, J. Alloys Compd. 485 (2009) 241-244.
[126] C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, E.H. Han, Natural ageing responses of duplex structured Mg-Li based alloys, Sci. Rep. 7 (2017) 40078.
[127] Z.K. Qu, R.Z. Wu, H.B. Zhan, M.L. Zhang, The solution and room temperature aging behavior of Mg-9Li-xAl(x=3, 6) alloys, J. Alloys Compd. 536 (2012) 145-149.
[128] J.C. McDonald, Age Hardening of Magnesium Alloy LA141A (Mg + 14 Wt Percent Li + 1 Wt Percent Al), ASM Trans. Q 61 (1968) 505.
[129] C.J. Ma, D. Zhang, J.N. Qin, Aging behavior of Mg-Li-Al alloys, T. Nonferr. Metal Soc. 9 (1999) 772-777.
[130] Z. Drozd, Z. Trojanova, S. Kudela, Deformation behaviour of Mg-Li-Al alloys, J. Alloys Compd. 378 (2004) 192-195.
[131] P. Crawford, R. Barrosa, J. Mendez, J. Foyos, O.S. EsSaid, On the transformation characteristics of LA141A (Mg-Li-Al) alloy, J. Mater. Process. Tech. 56 (1996) 108-118.
[132] A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, H. Tsubakino, Precipitation in Mg-(4-13)%Li-(4-5)%Zn ternary alloys, Mater. Trans. 44 (2003) 619-624.
[133] X.Y. Guo, R.Z. Wu, J.H. Zhang, B. Liu, M.L. Zhang, Influences of solid solution parameters on the microstrucuture and hardness of Mg-9Li-6Al and Mg-9Li-6Al-2Y, Mater. Design 53 (2014) 528-533.
[134] H.Y. Lin, R.Z. Wu, P.F. Fei, Z. Leng, X.Y. Guo, J.H. Zhang, B. Liu, M.L. Zhang, The solution and aging behavior of Mg-8Li-3Al-xCe(x=0, 1.0) alloys, Kovove Mater. 52 (2014) 47-55.
[135] R.Z. Wu, X.Y. Guo, D.Y. Li, Ageing behavior of Mg-9Li-6Al-xY(x=0, 0.5, 2) alloys, J. Alloys Compd. 616 (2014) 408-412.
[136] G.S. Song, M.V. Kral, Characterization of cast Mg-Li-Ca alloys, Mater. Charact. 54 (2005) 279-286.
[137] R.Z. Wu, M.L. Zhang, Microstructure, mechanical properties and aging behavior of Mg-5Li-3Al-2Zn-xAg, Mat. Sci. Eng. A 520 (2009) 36-39.
[138] F. Otto, A. Dlouhy, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater. 112 (2016) 40-52.
[139] B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy, Mater. Design 121 (2017) 254-260.
[140] B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Stability of ordered L1(2) and B-2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2, Scripta Mater. 123 (2016) 130-134.
[141] Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure, Sci. Rep. 7 (2017) 42742.
[142] D.Y. Li, C.X. Li, T. Feng, Y.D. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater. 123 (2017) 285-294.
[143] Y. Ma, B.B. Jiang, C.L. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L. Sun, The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys, Metals 7 (2017) 57.
[144] Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai, Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett. 151 (2015) 126-129.
[145] T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd. 479 (2009) 157-160.
[146] S.G. Ma, P.K. Liaw, M.C. Gao, J.W. Qiao, Z.H. Wang, Y. Zhang, Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, J. Alloys Compd. 604 (2014) 331-339.
[147] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44-51.
[148] L.L. Ma, L. Wang, Z.H. Nie, F.C. Wang, Y.F. Xue, J.L. Zhou, T.Q. Cao, Y.D. Wang, Y. Ren, Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron based high-energy X-ray diffraction, Acta Mater. 128 (2017) 12-21.
[149] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, J. Alloys Compd. 488 (2009) 57-64.
[150] F. De Geuser, F. Bley, A. Deschamps, A new method for evaluating the size of plate-like precipitates by small-angle scattering, J. Appl. Crystallogr. 45 (2012) 1208-1218.
[151] ASTM Standard E8: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2014, pp. 1-28.
[152] J.I. Kim, S. Miyazaki, Comparison of shape memory characteristics of a Ti-50.9 At. Pct Ni alloy aged at 473 and 673 K, Metall. Mater. Trans. A 36 (2005) 3301-3310.
[153] J.I. Kim, S. Miyazaki, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy, Acta Mater. 53 (2005) 4545-4554.
[154] P. Fratzl, F. Langmayr, O. Paris, Evaluation of 3D Small-Angle Scattering from Nonspherical Particles in Single-Crystals, J. Appl. Crystallogr. 26 (1993) 820-826.
[155] F.-C. Yen, K.-S. Hwang, S.-K. Wu, Fabrication of Porous Ti-rich Ti51Ni49 by Evaporating NaCl Space Holder, Metall. Mater. Trans. A 45 (2014) 2626-2635.
[156] M. Nishida, C.M. Wayman, T. Honma, Precipitation Processes in near-Equiatomic Tini Shape Memory Alloys, Metall. Trans. A 17 (1986) 1505-1515.
[157] M. Arciniegas, J. Casals, J.M. Manero, J. Peña, F.J. Gil, Study of hardness and wear behaviour of NiTi shape memory alloys, J. Alloys Compd. 460 (2008) 213-219.
[158] Q. Chen, X.F. Wu, T. Ko, The effects of Ti3Ni4 precipitates on the R-phase transformation, Scripta Metall. Mater. 29 (1993) 49-53.
[159] S.R. Kline, Reduction and analysis of SANS and USANS data using IGOR Pro, J. Appl. Crystallogr. 39 (2006) 895-900.
[160] C.S. Tsao, M. Li, Y. Zhang, J.B. Leao, W.S. Chiang, T.Y. Chung, Y.R. Tzeng, M.S. Yu, S.H. Chen, Probing the Room Temperature Spatial Distribution of Hydrogen in Nanoporous Carbon by Use of Small-Angle Neutron Scattering, J. Phys. Chem. C 114 (2010) 19895-19900.
[161] A. Deschamps, Y. Brechet, F. Livet, Influence of copper addition on precipitation kinetics and hardening in Al-Zn-Mg alloy, Mater. Sci. Tech. 15 (1999) 993-1000.
[162] G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, K. Otsuka, Precipitation kinetics of Ti3Ni4 in polycrystalline Ni-rich TiNi alloys and its relation to abnormal multi-stage transformation behavior, Mat. Sci. Eng. A 438 (2006) 622-626.
[163] P. Filip, K. Mazanec, On precipitation kinetics in TiNi shape memory alloys, Scripta Mater. 45 (2001) 701-707.
[164] M. Avrami, Kinetics of phase change I - General theory, J. Chem. Phys. 7 (1939) 1103-1112.
[165] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, T. Am. I. Min. Met. Eng. 135 (1939) 416-442.
[166] A. Kolmogoroff, Zur Statistik der Kristallisationsvorgänge in Metallen, Izv. Akad. Nauk SSSR Ser. Mat. 1 (1937) 355-359.
[167] S. Esmaeili, D.J. Lloyd, W.J. Poole, Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003) 3467-3481.
[168] T. Dorin, A. Deschamps, F. De Geuser, C. Sigli, Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T-1 phase in an Al-Cu-Li alloy, Acta Mater. 75 (2014) 134-146.
[169] A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre, B. Davo, Experimental and modelling assessment of precipitation kinetics in an Al-Li-Mg alloy, Acta Mater. 60 (2012) 1917-1928.
[170] P. Fratzl, Small-angle scattering in materials science - a short review of applications in alloys, ceramics and composite materials, J. Appl. Crystallogr. 36 (2003) 397-404.
[171] P.W. Yang, T.L. Lin, I.T. Liu, Y. Hu, U.S. Jeng, E.P. Gilbert, Small-Angle Neutron Scattering Studies on the Multilamellae Formed by Mixing Lamella-Forming Cationic Diblock Copolymers with Lipids and Their Interaction with DNA, Langmuir 32 (2016) 1828-1835.
[172] J. Berghausen, J. Zipfel, P. Lindner, W. Richtering, Influence of water-soluble polymers on the shear-induced structure formation in lyotropic lamellar phases, J. Phys. Chem. B 105 (2001) 11081-11088.
[173] I. Livsey, Neutron-Scattering from Concentric Cylinders - Intraparticle Interference Function and Radius of Gyration, J. Chem. Soc. Farad. T. 2 83 (1987) 1445-1452.
[174] J.W. Cahn, On spinodal decomposition, Acta Metall. Mater. 9 (1961) 795-801.
[175] J.W. Cahn, Phase Separation by Spinodal Decomposition in Isotropic Systems, J. Chem. Phys. 42 (1965) 93-99.
[176] C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Mater. 53 (2005) 2447-2458.
[177] Y.C. Huang, C.S. Tsao, S.K. Wu, A Study on the Nanoparticles Evolution in Isothermally Aged Strain Glass of Ti48.7Ni51.3 Shape Memory Alloy by In Situ Small-Angle X-ray Scattering, Metals 8 (2018) 352.
[178] R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering (Sixth Edition), Butterworth-Heinemann, Oxford, 1999, pp. 259-296.
[179] M.N. SHETTY, Dislocations and mechanical behaviour of materials, PHI Learning Private Limited, Delhi, Indian, 2013, pp. 419-431.
[180] T.H. Courtney, Mechanical behavior of materials, McGraw Hill, New York, USA, 2000, pp. 196-209.
[181] H.H. J. Roesler, M. Baeker, Mechanical Behaviour of Engineering Materials, Springer-Verlag, Berlin/Heidelberg, Germany, 2007, pp. 165-225.
[182] Z.L. Guo, W. Sha, Quantificati
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74662-
dc.description.abstract本研究利用小角度X光散射(SAXS)技術探討在Ti48.7Ni51.3形狀記憶合金中富鎳奈米域和Ti3Ni4奈米析出物於250°C時效下之演進及熱循環中之應變玻璃轉變、Mg-10.54 Li-1.11 Al-0.38 Zn (LAZ1110)合金中θ-MgLi2Al析出物在早期自然時效下之演進,以及冷軋延的等原子比CoCrFeMnNi高熵合金中奈米析出物於350–500 °C時效和Al0.2CoCrFeMnNi高熵合金中GP zone於550 °C時效之成長動力學,並針對析出物其相對體積分率、尺寸和形貌進行後續討論。Ti48.7Ni51.3應變玻璃之富鎳奈米域於淬火過程中就產生,隨著250°C時效而漸漸溶解,同時Ti3Ni4奈米析出物隨之成核、成長和粗化。其中,奈米域的鎳原子分佈為核殼結構,並由富鎳殼和高富鎳核組成。當MgLiAlZn合金固溶處理後自然時效,θ析出物之半徑從3.1奈米漸漸成長至6.9奈米,而其厚度則依然維持在約3.7奈米。θ析出物之相對體積分率在時效早期先快速上升接著趨緩,析出物成長至約17小時後達到峰值並擁有最高的硬度。而在冷軋延CoCrFeMnNi合金中之奈米析出物經500°C時效,其尺寸從原先半徑約1.2奈米之球狀析出物快速成長,並於時效60分鐘時達到析出飽和。冷軋延Al0.2CoCrFeNi合金中的雙峰時效硬化歸因於兩組GP zone的貢獻。DSC和XRD的實驗結果也顯示合金中之析出物的相演進。TEM觀察也呈現出析出物的尺寸和形貌,用以和SAXS結果相對照。最後,相關的機械性質也藉由DMA、硬度和拉伸試驗來和SAXS結果相互連結,包含應變玻璃的轉換特性、顯著的析出硬化效應等。zh_TW
dc.description.abstractSmall-angle X-ray scattering (SAXS) was used to reveal the evolutions of Ni-rich nanodomains and Ti3Ni4 nanoprecipitates in the Ti48.7Ni51.3 shape memory alloy aged isothermally at 250 °C and the strain glass transition in as-quenched Ti48.7Ni51.3 shape memory alloy during a thermal cycle, the evolution of the θ-MgLi2Al precipitates in the early aging stage at room temperature in the Mg-10.54 Li-1.11 Al-0.38 Zn (in wt.%) (LAZ1110) magnesium alloy, and the growth kinetics of nanoprecipitates of cold-rolled equiatomic CoCrFeMnNi high-entropy alloy aged at 350–500 ºC and Al0.2CoCrFeNi high-entropy alloy aged at 550 °C in terms of relative volume fraction, radius, thickness, and morphology. Ni-rich nanodomains in the Ti48.7Ni51.3 strain glass are formed in the quenching process and dissolve while Ti3Ni4 nanoprecipitates nucleate, grow and coarsen during aging. The distribution of Ni atoms in nanodomains is identified as a disk-like core–shell configuration with a Ni-rich shell and a highly Ni-rich core. The radius of θ precipitates in the MgLiAlZn alloy grows gradually from 3.1 nm to 6.9 nm with a nearly constant thickness of 3.7 nm. The relative volume fraction of θ precipitates increases rapidly in the early aging stage and then more slowly in the peak aging stage at ~17 hrs. The nanoprecipitates in the cold-rolled CoCrFeMnNi high-entropy alloy have a radius of ~1.2 nm, grow drastically in the early 30 min of aging at 500 ºC, and reach the saturation stage at 60 min aging. The double-peaked aging behavior exhibited in cold-rolled Al0.2CoCrFeNi high-entropy alloy is attributed by the contribution of the two groups of GP zones divided into GP1 and GP2 zones from 1 h of aging. DSC and XRD results demonstrate the phase evolution of precipitates in alloys. The complementary observations by TEM show the size and morphology of the precipitates. The mechanical properties, such as the frequency-dependent storage modulus, hardness and tensile stress-strain curve, are also measured to characterize the strain glass transition or quantitatively correlate with significant precipitation hardening.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:05:44Z (GMT). No. of bitstreams: 1
ntu-109-D03527017-1.pdf: 9448360 bytes, checksum: b899c9d0d8c93a80de53d8b7c9af7d05 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
Abstract i
摘要 iii
Chapter 1 Introduction 1
Chapter 2 Literature Review 10
2.1 Small-Angle X-ray Scattering 10
2.2 TiNi-based Shape Memory Alloys 13
2.2.1 Shape Memory Effect (SME) 15
2.2.2 Pseudoelasticity (PE) 15
2.2.3 Strain Glass Transition 16
2.3 MgLi-based Alloys 18
2.4 High Entropy Alloys 20
2.4.1 CoCrFeMnNi Alloy 21
2.4.2 AlxCoCrFeNi Alloy 23
Chapter 3 Experimental Procedures 33
3.1 Sample Preparation 33
3.1.1 Ti48.7Ni51.3 Shape Memory Alloy 33
3.1.2 Mg-10.54 Li-1.11 Al-0.38 Zn (wt.%) Alloy 33
3.1.3 Equiatomic CoCrFeMnNi High Entropy Alloy 34
3.1.4 Al0.2CoCrFeNi High Entropy Alloy 35
3.2 SAXS Measurements 35
3.2.1 In-situ SAXS Measurement 35
3.2.2 Synchrotron SAXS Measurement 37
3.3 DMA Tests 37
3.4 XRD Spectra 38
3.5 DSC Tests 38
3.6 Vickers Microhardness Measurements 38
3.7 TEM Observations 39
3.8 Tensile Tests 39
Chapter 4 Nanoparticles Evolution in Isothermally Aged Strain Glass of Ti48.7Ni51.3 Shape Memory Alloy 42
4.1 Formation and Structural Evolution of the New Nanoprecipitates during Isothermal Aging at 250ºC 42
4.2 Structural Evolution of Ni-Rich Nanodomains during Isothermal Aging at 250ºC 48
4.3 Variation of Strain Glass Temperature Tg and Frequency-Dependent Storage Modulus E0 with Aging Time at 250ºC 51
4.4 Concurrent Phase Evolutions and Kinetics of Ni-Rich Nanodomains and Ti3Ni4 Nanoprecipitates 52
4.4.1 Precipitation Kinetics and Mechanism of Ti3Ni4 Nanoprecipitates 52
4.4.2 Dissolution Kinetics and Mechanism of Ni-Rich Nanodomains 55
4.5 Role and Quantitative Correlation of Ni-Rich Nanodomains and Ti3Ni4 Nanoprecipitates to the Loss of Strain Glass Characteristic 57
4.6 Summary 59
Chapter 5 Structural Evolution and Mechanism of Strain Glass Transition in Ti48.7Ni51.3 Shape Memory Alloy 71
5.1 Results 71
5.1.1 Temperature-Dependent ASAXS Measurement of the as-Quenched Ti48.7Ni51.3 SMA 71
5.1.2 Structural Characterization of Core–Shell Disk Domains in the as-Quenched Sample by ASAXS 72
5.1.3 Structural Transition and Ordering Behavior Revealed by the In-situ ASAXS Structure Factor under the Thermal Cycle 77
5.2 Discussion 78
5.2.1 The Structural Evolution and the Reversible Behavior of the Highly Ni-Rich Disk Nanodomains under the Thermal Cycle 78
5.2.2 The Characteristics of the Structure Factor Peaks of ASAXS Profiles 80
5.2.3 The Evolution of Ordering Arrays during Heating from Tg to 250 °C 82
5.3 Summary 83
Chapter 6 Evolution and Growth Kinetics of θ Precipitates in Naturally Aged MgLiAlZn Alloy 89
6.1 Precipitate Evolution of Solution-Treated LAZ1110 Alloy During Natural Aging 89
6.2 Formation and Evolution of θ Precipitates During the Early Natural Aging Period 91
6.3 Precipitation Hardening Behavior 95
6.4 Summary 98
Chapter 7 Nano-Precipitates in Severely Deformed and Low-Temperature Aged CoCrFeMnNi High-Entropy Alloy 103
7.1 The Evolution of the SAXS Profiles at Different Aging Temperatures 103
7.2 Quantitative Characterization of the Nano-Precipitates by SAXS Modeling Analysis 106
7.3 Structural Evolution and Kinetics of Nano-Precipitation Correlated to Hardness Variation 109
7.4 TEM Observation of the Nano-Precipitates 110
7.5 Relationship between the Tensile Property and the Nano-Precipitate Evolution 111
7.6 Summary 113
Chapter 8 Evolution of Guinier-Preston Zones in Cold-Rolled Al0.2CoCrFeNi High-Entropy Alloy 119
8.1 Results 119
8.1.1 Hardness Variation 119
8.1.2 Microstructure Observation 120
8.1.3 Small-Angle X-ray Xcattering (SAXS) Analysis 121
8.1.4 Mechanical Properties 125
8.2 Discussion 126
8.2.1 Effect of Cold-Rolling on the Precipitation Behavior 126
8.2.2 Correlation between the Morphological Evolution of the GP Zones and the Mechanical Properties 128
8.3 Summary 131
Chapter 9 Conclusions 139
9.1 Nanoparticles Evolution in Isothermally Aged Strain Glass of Ti48.7Ni51.3 Shape Memory Alloy 139
9.2 Structural Evolution and Mechanism of Strain Glass Transition in Ti48.7Ni51.3 Shape Memory Alloy 140
9.3 Evolution and Growth Kinetics of θ Precipitates in Naturally Aged MgLiAlZn Alloy 141
9.4 Nano-Precipitates in Severely Deformed and Low-Temperature Aged CoCrFeMnNi High-Entropy Alloy 142
9.5 Evolution of Guinier-Preston Zones in Cold-Rolled Al0.2CoCrFeNi High-Entropy Alloy 143
References 146
Appendix A study on the Hall–Petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys 174
A.1 Introduction 174
A.2 Materials and Methods 175
A.3 Results and discussion 177
A.3.1 Grain size effect on microhardness 178
A.3.2 Solid-solution effect on microhardness 181
A.3.3 Grain growth kinetics analysis 183
A.4 Conclusions 188
A.References 196
Publications 206
dc.language.isoen
dc.subject鎂鋰合金zh_TW
dc.subject鈦鎳形狀記憶合金zh_TW
dc.subject析出硬化zh_TW
dc.subject小角度X光散射zh_TW
dc.subject機械性質zh_TW
dc.subject高熵合金zh_TW
dc.subjectMechanical propertyen
dc.subjectSmall angle X-ray scatteringen
dc.subjectHigh-entropy alloyen
dc.subjectMagnesium-lithium alloyen
dc.subjectTiNi shape memory alloyen
dc.subjectPrecipitation hardeningen
dc.title以小角度X光散射技術探討合金早期析出行為之研究zh_TW
dc.titleThe Study of the Early Precipitation Behaviors of Alloys using Small-Angle X-Ray Scattering Techniqueen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee林新智(Hsin-Chih Lin),曹正熙(Cheng-Si Tsao),張世航(Shih-Hang Chang),周棟勝(Tung-Sheng Chou)
dc.subject.keyword小角度X光散射,析出硬化,鈦鎳形狀記憶合金,鎂鋰合金,高熵合金,機械性質,zh_TW
dc.subject.keywordSmall angle X-ray scattering,Precipitation hardening,TiNi shape memory alloy,Magnesium-lithium alloy,High-entropy alloy,Mechanical property,en
dc.relation.page208
dc.identifier.doi10.6342/NTU202000130
dc.rights.note有償授權
dc.date.accepted2020-01-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
9.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved