Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖
dc.contributor.authorShao-Chuan Changen
dc.contributor.author張劭詮zh_TW
dc.date.accessioned2021-06-17T08:48:10Z-
dc.date.available2024-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citationOzgur, U., et al., ZnO devices and applications: A review of current status and future prospects. Proceedings of the IEEE, 2010. 98(7): p. 1255-1268.
Djurišić, A.B., et al., ZnO nanostructures: growth, properties and applications. Journal of Materials Chemistry, 2012. 22(14): p. 6526-6535.
Ozgur, U., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301.
Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 2004. 16(25): p. R829-R858.
Zhang, Y., et al., Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials. 2012. 2012: p. 22.
Kołodziejczak-Radzimska, A. and Jesionowski, T., Zinc oxide—From synthesis to application: A review. 2014. 7(4): p. 2833-2881.
Hariharan, C., Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Applied Catalysis A: General, 2006. 304: p. 55-61.
Khodja, A.A., et al., Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 2001. 141(2): p. 231-239.
Sobana, N. and Swaminathan, M., The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology, 2007. 56(1): p. 101-107.
Ahmed, S., et al., Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 2010. 261(1): p. 3-18.
Kaidashev, E.M., et al., High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters, 2003. 82(22): p. 3901-3903.
Hendry, E., et al., Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Letters, 2006. 6(4): p. 755-759.
Coleman, V. A. and Jagadish, C., Chapter 1 - Basic properties and applications of ZnO, in zinc oxide bulk, thin films and nanostructures, C. Jagadish and S. Pearton, Editors. 2006, Elsevier Science Ltd: Oxford. p. 1-20.
Ridhuan, N.S., et al., Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLOS ONE, 2012. 7(11): p. e50405.
Sugunan, A., et al., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006. 39(1): p. 49-56.
Parize, R., et al., Effects of hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition. The Journal of Physical Chemistry C, 2016. 120(9): p. 5242-5250.
Chen, J., et al., Electronic structure and bonding properties of cobalt oxide in the spinel structure. Physical Review B, 2011. 83(24): p. 245204.
Petitto, S.C., et al., Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. Journal of Molecular Catalysis A: Chemical, 2008. 281(1): p. 49-58.
Heinz, K. and Hammer, L., Epitaxial cobalt oxide films on Ir(100)—the importance of crystallographic analyses. Journal of Physics: Condensed Matter, 2013. 25(17): p. 173001.
Barreca, D., et al., Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. CrystEngComm, 2010. 12(7): p. 2185-2197.
Chen, J.S., et al., Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Applied Materials & Interfaces, 2010. 2(12): p. 3628-3635.
Ryu, J., et al., Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano, 2010. 4(1): p. 159-164.
Wang, G., et al., Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. The Journal of Physical Chemistry C, 2009. 113(11): p. 4357-4361.
Kim, J., et al., Low-temperature atomic layer deposition of cobalt oxide as an effective catalyst for photoelectrochemical water-splitting devices. Chemistry of Materials, 2017. 29(14): p. 5796-5805.
Liao, L., et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nature Nanotechnology, 2013. 9: p. 69.
Hou, J., et al., Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting. Energy & Environmental Science, 2015. 8(4): p. 1348-1357.
Barakat, N.A.M., et al., Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. The Journal of Physical Chemistry C, 2008. 112(32): p. 12225-12233.
Yang, H., et al., Single step synthesis of high-purity CoO Nanocrystals. The Journal of Physical Chemistry B, 2007. 111(28): p. 8006-8013.
Nidhin, M., et al., Green synthesis of rock salt CoO nanoparticles for coating applications by complexation and surface passivation with starch. Chemical Engineering Journal, 2012. 185: p. 352-357.
Shi, H. and X. He, Large-scale synthesis and magnetic properties of cubic CoO nanoparticles. Journal of Physics and Chemistry of Solids, 2012. 73(5): p. 646-650.
Ghosh, M., et al., Synthesis and magnetic properties of CoO nanoparticles. Chemistry of Materials, 2005. 17(9): p. 2348-2352.
Zhang, H., et al., Gas-phase cation exchange toward porous single-crystal CoO nanorods for catalytic hydrogen production. Chemistry of Materials, 2015. 27(1): p. 352-357.
Koteeswara Reddy, N., et al., Electrochemical water oxidation of ultrathin cobalt oxide-based catalyst supported onto aligned ZnO nanorods. ACS Applied Materials & Interfaces, 2016. 8(5): p. 3226-3232.
Chivot, J., et al., New insight in the behaviour of Co–H2O system at 25–150°C, based on revised Pourbaix diagrams. Corrosion Science, 2008. 50(1): p. 62-69.
Van de Krol, R. and Grätzel, M., Photoelectrochemical hydrogen production. Vol. 90. 2012: Springer.
Kudo, A. and Miseki, A., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
Jian, J., et al., Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy, 2018. 51: p. 457-480.
Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(4): p. 179-209.
Akira, F. and Kenichi, H., Electrochemical evidence for the mechanism of the primary stage of photosynthesis. 1971. 44(4): p. 1148-1150.
Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of Electrochemistry, 2007. 6: p. 1-53.
Grimes, C.A., et al., Photoelectrolysis, in light, water, hydrogen: The solar generation of hydrogen by water photoelectrolysis, C.A. Grimes, O.K. Varghese, and S. Ranjan, Editors. 2008, Springer US: Boston, MA. p. 115-190.
Van de Krol, R., Principles of photoelectrochemical cells, in photoelectrochemical hydrogen production, R. Van de Krol and M. Grätzel, Editors. 2012, Springer US: Boston, MA. p. 13-67.
Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
Yang, X., et al., Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2009. 9(6): p. 2331-2336.
Liu, Y., et al., Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Research, 2015. 8(9): p. 2891-2900.
Marschall, R., Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014. 24(17): p. 2421-2440.
Cao, S., et al., Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy, 2016. 24: 25-31.
Janotti, A. and Van de Walle, C.G., New insights into the role of native point defects in ZnO. Journal of Crystal Growth, 2006. 287(1): p. 58-65.
Janotti, A. and Van de Walle, C.G., Native point defects in ZnO. Physical Review B, 2007. 76(16): p. 165202.
Janotti, A. and Van de Walle, C.G., Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009. 72(12): p. 29.
Klingshirn, C.F., et al., Zinc oxide: from fundamental properties towards novel applications. Vol. 120. 2010: Springer Science & Business Media.
Van de Walle, C.G., Hydrogen as a cause of doping in zinc oxide. Physical Review Letters, 2000. 85(5): p. 1012-1015.
Matsuishi, S., et al., Hydride ion as photoelectron donor in microporous crystal. Journal of the American Chemical Society, 2005. 127(36): p. 12454-12455.
Hayashi, K., et al., Hydride ion as a two-electron donor in a nanoporous crystalline semiconductor 12CaO·7Al2O3. The Journal of Physical Chemistry B, 2005. 109(50): p. 23836-23842.
Van de Walle, C.G., Chapter 16 Theory of ssolated interstitial hydrogen and muonium in crystalline semiconductors, in semiconductors and semimetals, J.I. Pankove and N.M. Johnson, Editors. 1991, Elsevier. p. 585-622.
Van de Walle, C.G. and Neugebauer, J., Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature, 2003. 423(6940): p. 626-628.
Janotti, A. and Van de Walle, C.G., Hydrogen multicentre bonds. Nature Materials, 2006. 6: p. 44.
Du, M.H. and Biswas, K., Anionic and hidden hydrogen in ZnO. Physical Review Letters, 2011. 106(11): p. 115502.
Bustan Afruz, F., et al., Structural and electronic properties of hydrogen doped Wurtzite ZnO. Computational Materials Science, 2018. 143: p. 232-239.
Dong, J.J., et al., Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: Identification of hydrogen donors in ZnO. ACS Applied Materials & Interfaces, 2010. 2(6): p. 1780-1784.
Zhu, B.L., et al., Influence of hydrogen introduction on structure and properties of ZnO thin films during sputtering and post-annealing. Thin Solid Films, 2011. 519(11): p. 3809-3815.
Thomas, M.A., et al., New approach toward transparent and conductive ZnO by atomic layer deposition: Hydrogen plasma doping. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(1): p. 01A130.
Ding, L., et al., Relaxing the conductivity/transparency trade-off in MOCVD ZnO thin films by hydrogen plasma. Advanced Functional Materials, 2013. 23(41): p. 5177-5182.
Gaspar, D., et al., High mobility hydrogenated zinc oxide thin films. Solar Energy Materials and Solar Cells, 2017. 163: p. 255-262.
Macco, B., et al., Atomic layer deposition of high-mobility hydrogen-doped zinc oxide. Solar Energy Materials and Solar Cells, 2017. 173: p. 111-119.
Panagopoulos, C.N., et al., Cathodic hydrogen charging of zinc. Corrosion Science, 2014. 79: p. 16-20.
Li, X., et al., Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels. Materials Science and Engineering: A, 2015. 641: 45-53.
Kazum, O. and Bobby Kannan, M., Effect of cathodic hydrogen-charging current density on the hydrogen diffusivity in nanostructured bainitic steels. Materials Science and Technology, 2017. 33(13): p. 1548-1552.
Livage, J. and Sanchez, C., Sol-gel chemistry. Journal of Non-Crystalline Solids, 1992. 145: p. 11-19.
Znaidi, L., Sol–gel-deposited ZnO thin films: A review. Materials Science and Engineering: B, 2010. 174(1-3): p. 18-30.
Sahu, N., et al., Fundamental understanding and modeling of spin coating process: A review. Indian Journal of Physics, 2009. 83(4): p. 493-502.
George, S.M., Atomic layer deposition: An overview. Chemical Reviews, 2010. 110(1): p. 111-131.
Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p. 121301.
Al-Gaashani, R., et al., XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International, 2013. 39(3): p. 2283-2292.
Su, S.H., et al., Elucidating the structure and chemical state of Co growth on the ZnO(101̅0) surface. The Journal of Physical Chemistry C, 2012. 116(18): p. 9917-9924.
López, R., and Gómez, R., Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-gel Science and Technology, 2012. 61(1): p. 1-7.
Chen, Z., et al., UV-Vis spectroscopy, in photoelectrochemical water splitting: Standards, experimental methods, and protocols. 2013, Springer New York: New York, NY. p. 49-62.
Ghule, A.V., et al., In situ thermo-TOF-SIMS study of thermal decomposition of zinc acetate dihydrate. Journal of Mass Spectrometry, 2004. 39(10): p. 1202-1208.
Wang, Y., et al., Hydrogen induced metallicity on the ZnO (101̅0) surface. Physical Review Letters, 2005. 95(26): p. 266104.
Wang, C., et al., Hydrogen-induced metallization of zinc oxide (21̅1̅0) surface and nanowires: The effect of curvature. Physical Review B, 2008. 77(24): p. 245303.
Qiu, H., et al., Ionization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials. Physical Review Letters, 2008. 101(23): p. 236401.
Wong, K.W.J., et al., Interaction of hydrogen with ZnO nanopowders—evidence of hydroxyl group formation. Nanotechnology, 2011. 23(1): p. 015705.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74655-
dc.description.abstract氧化鋅材料因為擁有許多有價值的物理和化學特性,被應用於不同的領域之中。在光電化學水分解系統中,氧化鋅作為光電材料也十分常見。強化光電材料的光催化能力非常重要,強化的方式包括提升可見光波段的吸收,或是改善能帶結構來增加載子分離的效果。本研究嘗試以氧化鋅奈米柱陣列結構作為基底,發展氧化鋅及氧化鈷材料的複合異質結構,來提高光電化學水分解反應之效果。另一方面,嘗試引入陰極充氫處理,改善氧化鋅的電性,如增加載子濃度和降低電阻率,來提高光催化能力。
本研究以ITO導電玻璃作為基板,經過旋轉塗佈法及原子層沉積技術鍍覆晶種層後,透過水熱法沉積氧化鋅奈米柱陣列,並且使用簡易的電鍍法在氧化鋅奈米柱陣列上沉積氧化鈷奈米顆粒,形成擁有Type-II半導體能帶結構的異質結構,並應用於光電化學水分解系統中。因為此兩種材料的能帶結構有相對差異,光電極照光後被激發的電子會由氧化鈷傳遞至氧化鋅,光激發的電洞則以反方向由氧化鋅傳遞至氧化鈷,從而降低電子電洞對的複合,並提高載子分離的效果。氧化鋅的能隙大小位在紫外光波段,所以使用擁有較小能隙的氧化鈷進行改質,可以促進可見光波段的吸收,能有效率地利用太陽光所涵蓋的光譜波段,促使氧化鋅及氧化鈷的異質結構產生較佳的光電化學水分解反應。
本文的另一項研究主題為,在氧化鋅不同奈米結構下進行陰極充氫處理,摻雜氫氣的行為不同,造成光催化能力變化之比較。以氧化鋅晶種層進行陰極充氫處理,可以促使氫氣吸附於材料表面,進一步擴散至材料內部,轉換成可以傳遞電荷的載子。此載子的擴散能力比氧空缺更好,藉此提升載子濃度並降低電阻率,有助於材料獲得較佳的的光催化能力。在陰極充氫處理之後,製備氧化鋅及氧化鈷的異質結構可以大幅提升光催化能力。氧化鋅晶柱表面以非極性晶面為主,晶體成長的環境中晶面上的氧原子易與氫原子鍵結。若以氧化鋅奈米柱陣列進行陰極充氫處理,過程中的還原環境促使晶柱表面的氫原子還原,產生的氫氣由表面脫附,因而無法達到摻雜氫氣的效果,造成光催化能力下降。
zh_TW
dc.description.abstractBecause of its valuable physical and chemical properties, the semiconductor material, Zinc Oxide (ZnO) is widely used in various fields including the photoelectrochemical system. There are some ideas to improve the catalytic activity of ZnO, such as increasing the absorption of visible light and enhancing the separation of carriers. In this study, a heterogeneous composite nanostructure was formed by ZnO nanowire arrays as a substrate and cobalt oxide (CoO) deposited on it. This process could enhance the effect of the photoelectrochemical water splitting reaction in the visible light region. Besides, the introduction of a cathodic hydrogen charging treatment might increase the carrier concentration and decrease the resistivity of ZnO to get the better catalytic ability.
In this study, after plating the seed layer by spin coating and atomic layer deposition techniques on the conductive glass (Indium Tin Oxide, ITO), ZnO nanowire arrays were grown by the hydrothermal method, and the photoanode was made from the electrodeposition method that we coated CoO nanoparticles on the ZnO nanowire arrays to get a heterostructure with type-II band structure. Since the difference of the energy band levels between these two materials, the photo-excited electrons would be transferred from the conduction band of CoO to that of ZnO, and the holes would be transferred from the valence band of CoO to that of ZnO. This could reduce the recombination of electron and hole pairs and enhance the separation of carriers. The bandgap of ZnO corresponds to the energy of UV light, and CoO has narrower bandgap. Thus, the heterosturcture enhances the absorption of visible light, effectively utilize the whole range of sun light and improve the reaction of photoelectrochemical water splitting.
Another subject of this paper is the comparison of the influence of cathodic hydrogen charging (CHC treatment) applied to different nanostructures of ZnO. CHC treatment can promote hydrogen adsorbing on the surface of ZnO seed layer, further diffusing into the material and converting into a carrier whose diffusion ability is better than oxygen vacancies, then increase the carrier concentration and lower the resistivity of ZnO. This helps ZnO to obtain better photocatalytic ability. After CHC treatment, the heterostructure of ZnO and CoO enhances the photocatalytic activity greatly. However, CHC treatment applied to ZnO nanowire arrays causes hydrogen desorption from the non-polar surface where the bonding of hydrogen with oxygen has generated during the process of crystal growth. There is no hydrogen doping in ZnO nanowire arrays, so its photocatalytic activity decreases.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:48:10Z (GMT). No. of bitstreams: 1
ntu-108-R06527003-1.pdf: 8770484 bytes, checksum: 8f8319dd6c2676c3b95448e6cb90d2c1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iv
Abstract vi
目錄 viii
圖目錄 x
表目錄 xv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 3
第二章 文獻回顧 5
2.1 氧化鋅 5
2.1.1 氧化鋅的基本性質 5
2.1.2 由水熱法製備氧化鋅奈米柱 7
2.2 氧化鈷 8
2.2.1 氧化鈷的基本性質 8
2.2.2 電鍍法製備氧化鈷與氧化鋅奈米異質結構 11
2.3 光電化學水分解 12
2.3.1 水分解反應原理 12
2.3.2 光電化學水分解系統 15
2.3.3 光觸媒材料 19
2.3.4 異質結構 21
2.4 氧化鋅摻雜氫的行為 23
2.5 溶膠凝膠法及旋轉塗佈法 31
2.6 原子層沉積技術 33
第三章 實驗方法 36
3.1 實驗流程 36
3.2 溶膠凝膠法製備氧化鋅晶種層 36
3.3 原子層沉積技術製備氧化鋅晶種層 37
3.4 水熱法合成氧化鋅奈米柱陣列 38
3.5 電鍍法合成異質結構 39
3.6 氧化鋅奈米結構之陰極充氫處理 40
3.7 材料成分與電性分析 40
3.7.1 晶體結構分析 40
3.7.2 原子成分鑒定 41
3.7.3 能帶結構分析 42
3.7.4 光電化學水分解反應 43
第四章 實驗結果與討論 44
4.1 氧化鋅奈米柱陣列 – Sol route 44
4.2 氧化鋅及氧化鈷奈米異質結構 – Sol route 49
4.3 氧化鋅及氧化鈷奈米異質結構 – ALD route 74
4.4 綜合比較氧化鋅及氧化鈷奈米異質結構 83
4.5 氫摻雜氧化鋅及氧化鈷奈米異質結構 87
第五章 結論 103
5.1 研究成果 103
5.2 未來研究方向 105
參考文獻 106
dc.language.isozh-TW
dc.title異質接面和氫摻雜對氧化鋅-氧化鈷奈米複合材料光電性質之影響zh_TW
dc.titleEffect of Heterojunction and Hydrogen Doping on the Photoelectrical Properties of ZnO-CoO Nanocompositesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳敏璋,蔡豐羽,段維新
dc.subject.keyword光電化學水系統,光催化,光電流,光陽極,奈米異質結構,氧化鋅,氧化鈷,氫摻雜,zh_TW
dc.subject.keywordPhotoelectrochemical system,Photocatalysis,Photocurrent,Photoanode,Heterogeneous nanostructure,Zinc oxide,Cobalt oxide,Hydrogen doping,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201902547
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved