Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏彰
dc.contributor.authorChih-Lin Chuen
dc.contributor.author朱芷琳zh_TW
dc.date.accessioned2021-06-17T08:38:39Z-
dc.date.available2024-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citation臺灣質譜學會(2015),質譜分析技術原理與應用,初版,新北;全華。
李彥輝(2019)。木糖醇減鹽味噌活性成分分析與味噌加工製品。國立臺灣大學食品科技研究所碩士論文。臺北,臺灣。
呂廷璋、陳宏彰、丁俞文、張正明、張祐維(2018)。影響黃豆食品保存期限因子的模式研究與預估系統之建立。106 年度旗艦計畫「建構安全的食品體系—新穎科技食品之應用科技發展計畫」。臺北,臺灣。
簡子芸(2019)。豆漿與豆腐之微生物分離及其特性分離。國立臺灣大學食品科技研究所碩士論文。臺北,臺灣。
陳宏權(2017) 。建立黑豆植化素指紋圖譜分析平台。國立臺灣大學食品科技研究所碩士論文。臺北,臺灣。
施明智(2010),食物學原理,第三版,新北:藝軒,p. 187-202。
衛生福利部食品藥物管理署。膠囊錠狀食品中大豆異黃酮之檢驗方法。2014 年 8 月 21 日。
衛生福利部食品藥物管理署。健康食品安定性試驗指引。2018 年 10 月 25 日。
衛生福利部食品藥物管理署。食品化學檢驗方法之確效規範第二次修正。2013 年 9 月 9 日。
衛生福利部食品藥物管理署。市售包裝食品有效日期評估指引。2013 年 4 月 24 日。
衛生福利部食品藥物管理署。實驗室品質管理規範—化學領域測試結果之品質管制第七次修訂。2018 年 10 月 25 日。
胡京枝、董小海、余大杰,牛奶及其制品中游离氨基酸含量的测定方法研究,河南畜牧獸區。2007, 28, 29-31.
Anderrson J.W.; Johnstone B.M.; Cook-Newell M.E., Meta-analysis of the effects of soy protein intake on serum lipids. The New England Jouranl of Medicine. 1995, 333, 276-282.
Arques M.C.; Pastoriza S.; Delgado-Andrade C.; Clemente A.; Rufian-Henares J.A., Relationship between glycation and polyphenol content and the bioactivity of selected commercial soy milks. Journal of Agricultural and Food Chemistry. 2016, 64, 1823-1830.
Assar S.H.; Moloney C.; Lima M.; Magee R.; Ames J.M., Determination of Nε-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids. 2009, 36, 317-326.
Baptista J.A.B.; Carvalho R.C.B., Indirect determination of Amadori compounds in milk-based products by HPLC/ELSD/UV as an index of protein deterioration. Food Research International. 2004, 37, 739-747.
Bosch L.; Alegría A.; Farré R.; Clemente G., Effect of storage conditions on furosine formation in milk – cereal based baby foods. Food Chemistry. 2008, 107, 1681-1686.
Damodaran S., Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process. Journal of Agricultural and Food Chemistry. 1988, 36, 262-269.
Danielsson J.; Mu X.; Lang L.; Wang H.; Binolfi A.; Theillet F.X.; Bekei B.; Logan D.T.; Selenko P.; Wennerstrom H.; Oliveberg M., Thermodynamics of protein destabilization in live cells. Proceedings of the National Academy of Sciences. 2015, 112, 12402-12407.
Delgado-Andrade C.; Seiquer I.; Navarro M.P.; Morales F.J., Maillard reaction indicators in diets usually consumed by adolescent population. Molecular Nutrition and Food Research. 2007, 51, 341-351.
Directorate General for Health and Food Safety (2017). Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed (SANTE/11813/2017).
Eisen B.; Ungar Y.; Shimoni E., Stability of isoflavones in soy milk stored at elevated and ambient temperatures. Journal of Agricultural and Food Chemistry. 2003, 51, 2212-2215.
Erbersdobler H.F.; Dehn B.; Nangpal A.; Reuter H., Determination of furosine in heated milk as a measure of heat intensity during processing. Journal of Dairy Research. 1987, 54, 147-151.
Erbersdobler H.F.; Somoza V., Forty years of furosine – Forty years of using Maillard reaction products as indicators of the nutritional quality of foods. Molecular Nutrition and Food Research. 2007, 51, 423-430.
ET ISO 18329 (2012). Milk and milk products – determination of furosine content – ion-pair reverse-phase high-performance liquid chromatography method. Ethiopian Standards Agency.
Fennema O. R. (1996). Food chemistry. New York, NY: Marcel Dekker.
Griffith A.P.; Collison M.W., Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry. Journal of Chromatography A. 2001, 913, 397-413.
HMDB, 2008. L-Phenylalanine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/248
HMDB, 2008. L-Tryptophan. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/1321
HMDB, 2008. L-Leucine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/951
HMDB, 2008. L-Isoleucine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/271
HMDB, 2008. L-Methionine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/969
HMDB, 2008. L-Proline. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/254
HMDB, 2008. L-Tyrosine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/245
HMDB, 2008. L-Valine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/1244
HMDB, 2015. L-Alanine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/178939
HMDB, 2008. L-Threonine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/263
HMDB, 2008. L-Glutamic acid. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/221
HMDB, 2008. L-Aspartic acid. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/304
HMDB, 2008. L-Serine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/295
HMDB, 2008. L-Cystine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/307
HMDB, 2008. L-Histidine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/283
HMDB, 2008. L-Lysine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/289
HMDB, 2008. L-Arginine. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/740
HMDB, 2008. γ-Aminobutyric acid. Retrieved June 19, 2019, from http://www.hmdb.ca/spectra/ms_ms/163
Hu Q.; Noll R.J.; Li H.; Makarov A.; Hardman M.; Cooks R.G., The Orbitrap: a new mass spectrometer. Journal of Mass Spectrometry. 2005, 40, 430-443.
Hughes G.J.; Ryan D.J.; Mukherjea R.; Schasteen C.S., Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for Soy Protein Isolates and Concentrate. Journal of Agricultural and Food Chemistry. 2011, 59, 12707-12712.
International Organization for Standardization (2012). Milk and mik products—Determination of furosine content—Ion-pair reverse-phase high-performance liquid chromatography method (ISO 18329:2012).
Jasson T.; Clausen M.R.; Sundekilde U.K.; Eggers N.; Nyegaard S.; Larsen L.B.; Ray C.; Sundgren A.; Andersen H.J.; Bertram H.C., Lactose-hydrolyzed milk is more prone to chemical changes during storage than conventional ultra-high-temperature (UHT) milk. Journal of Agricultural and Food Chemistry. 2014, 62, 7886-7896.
Krause R.; Knol K.; Henle T., Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine. The journal European Food Research and Technology. 2003, 216, 277-283.
Kuang L.; Jing Z.; Wang J.; Ma L.; Liu X.; Yang J., Quantitative determination of ε-N-Carboxymethyl-L-lysine in human plasma by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2014, 90, 1-6.
Li Y.; Liu X.; Meng l.; Wang Y., Qualitative and quantitative analysis of furosine in fresh and processed ginsengs. Journal of Ginseng Research. 2018, 42, 21-26.
Liu X.X.; Li S.H.; Chen J.Z.; Sun K.; Wang X.J.; Wang X.G.; Hui R.T., Effect of soy isoflavones on blood pressure, a meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Disease. 2012, 22, 463-470.
Lu W.; Lv X.; Gao B.; Shi H.; Yu L.L., Differentiating milk and non-milk proteins by UPLC amino acid fingerprints combined with chemometric data analysis techniques. Journal of Agricultural and Food Chemistry. 2015, 63, 3996-4002.
Makhatadze G.I.; Privalov P.L., Heat capacity of proteins I. partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. The Journal of Molecular Biology. 1990, 213, 375-384.
Mellon F.A. (2003). Mass spectrometry. In Encyclopedia of Food Sciences and Nutrition (Second Edition) (pp. 3739-3749). Cambridge, MA: Academic Press.
Morales V.; Sanz M.L.; Martin-Alvarez P.J.; Corzo N., Combined use of HMF and furosine to assess fresh honey quality. Journal of the Science of Food and Agriculture. 2009, 89, 1332-1338.
Narayanan K.R.A.; Kumar A.; Patil G.R., Kinetics of various deteriorative changes during storage of UHT soy beverage and development of a shelf-life prediction model. Food Science and Technology. 1993, 26, 191-197.
Nguyen H.T.; van der Fels-klerx H.J.; van Boekel M.A.J.S., Kinetics of Nε-(carboxymethyl)lysine formation in aqueous model systems of sugars and casein. Food Chemistry. 2016, 192, 125-133.
Oliverberg M.; Tan Y.J.; Fersht A.R., Negative activation enthalpies in the kinetics of protein folding. Proceedings of the National Academy of Sciences. 1995, 92, 8926-8929.
Park H.J.; Jung Y.M., One step salting-out assisted liquid-liquid extraction followed by UHPLC-ESI/MS/MS for the analysis of isoflavones in soy milk. Food Chemistry, 2017, 229: 797-804.
Pedro A.M.K.; Ferreira M.M.C., Multivariate accelerated shelf-life testing: a novel approach for determining the shelf-life of foods. Journal of Chemometrics. 2006, 20, 76-83.
Penndorf I.; Biedermann D.; Maurer S.V.; Henle T., Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: Quantification of α-N-(2-furoylmethyl) amino acids. Journal of Agricultural and Food Chemistry. 2007, 55, 723-727.
Prabakaran M.; Lee J.H.; Ahmad A.; Kim S.H.; Woo K.S.; Kim M.J.; Chung I.M., Effect of storage time and temperature on phenolic compounds of soybean (Glycine max L.) Flour. Molecules. 2018, 23, 2269-2289.
Privalov P.L.; Makhatadze G.I., Heat capacity of proteins II. Partial molar heat capacity of the unfolded polypeptide chain of protein: protein unfolding effects. The Journal of Molecular Biology. 1990, 213, 385-391.
Randath D.D.; Padhi E.M.T.; Sarfaraz S.; Renwick S., Beyond the cholesterol-lowering effect of soy protein, a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients. 2017, 9, 324-348.
Rostagno M.A.; Villares A.; Guillamon E.; Garcia-Lafuente A.; Martinez J-A., Sample preparation for the analysis of isoflavones from soybeans and soy foods. Journal of Chromatography A. 2009, 1216, 2-29.
Sanz M.L.; del Castillo M.D.; Corzo N.; Olano A., 2-Furoylmethyl amimno acids and hydroxymethylfurfural as indicators of honey quality. Journal of Agricultural and Food Chemistry. 2003, 51, 4278-4283.
Schutter D.D.P.; Saison D.; Delvaux F.; Derdelinckx G.; Delvaux F.R. (2009). The chemistry of ageing beer. In Beer in health and disease prevention (pp. 375-388). Burlington, MA: Elsevier.
Shimoni E., Stability and shelf life of bioactive sompounds during food processing and storage: soy isoflavones. Journal of Food Science. 2004, 69, 160-168.
Sun S.W.; Lin Y. C.; Weng Y. M.; Chen M. J., Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis. 2006, 19, 112-117.
Sunds A.V.; Rauh V.M.; Sorensen J.; Larsen L.B., Maillard reaction progress in UHT milk during storage at different temperature levels and cycles. International Dairy Journal. 2018, 77, 56-64.
Takahashi S., Sodium borohydride as a reducing agent for preparing ninhydrin reagent for amino acid analysis. Journal of Biochemistry. 1978, 83, 57-60.
Tavares W.P.S.; Dong S.; Jin W.; Wang Y.; Han K.; Zha F.; Zhao Y.; Zeng M., Effect of different cooking conditions on the profiles of Maillard reaction products and nutrient composition of hairtail (Thichiurus lepturus) fillets. Food Research International. 2018, 103, 390-397.
The Commission of the European Communities (2002). Concerning the Performance of Analytical Methods and the Interpretation of Results (2002/657/EC).
Tomita R.; Todorodi K.; Maruoka H.; Yoshida H.; Fujioka T.; Nakashima M.; Yamaguchi M.; Nohta H., Amino acid metabolomics using LC-MS/MS: Assessment of cancer-cell resistance in a simulated tumor microenvironment. Analytical Sciences. 2016, 32, 893-900.
Troise A.D.; Bandini E.; Donno R.D.; Meijer G.; Trezzi M.; Fogliano V., The quality of low lactose milk is affected by the side proteolytic activity of the lactase used in the production process. Food Research International. 2016, 89, 514-525.
Troise A.D.; Fiore A.; Wiltafsky M.; Fogliano V., Quantification of Nε-(2-furoylmethyl)-L-lysine (furosine), Nε-(carboxymethyl)-L-lysine (CML), Nε-(carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chemistry. 2015, 188, 357-364.
Tsugita A.; Scheffler J.J., A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. European Journal of Biochemistry. 1982, 124, 585-588.
van Boekel M.A.J.S., Effect of heating on Maillard reactions in milk. Food Chemistry. 1998, 62, 403-414.
Wang L.; Xu R.; Hu B.; Li W.; Sun Y.; Tu Y.; Zeng X., Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography conbined with solid-phase extraction. Food Chemistry. 2010, 123, 1259-1266.
Weiss M.F.; Erhard P.; Kader-Attia F.A.; Wu Y.C.; Deoreo P.B.; Araki A.; Glomb M.A.; Monnier V.M., Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney International. 2000, 57, 2571-2585.
Wellner A.; Huettl C.; Henle T., Formation of Maillard reaction products during heat treatment of carrots. The Journal of Agricultural and Food Chemistry. 2011, 59, 7992-7998.
Yu L.; He Z.; Zeng M.; Zheng Z.; He J.; Wang M.; Chen J., Effects of oxidized linoleic acid on the formation of Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine in Maillard reaction system. International Journal of Food Science and Technology. 2016, 51, 742-752.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74488-
dc.description.abstract豆漿具有完整的必需胺基酸且富含大豆異黃酮為眾人重視,但目前並無良好的保存期限評估;過短的保存期限造成食物資源的浪費,過長的保存期限或不當的貯存環境則使功效成分降解、影響營養品質。貯存過程中,豆漿中胺基酸的胺基可能與醣的羰基進行梅納反應,代表了胺基酸的降解及潛在的有害物質生成,其中以帶有ε-胺基的離胺酸最易發生反應產生糠胺酸(furosine)、carboxymethyl-lysine (CML)及carboxyethyl-lysine (CEL)。為了全面研究豆漿中品質指標,本研究開發無衍生化,直接以 HPLC-ESI-Q-Orbitrap 同步分析20種胺基酸與3種梅納反應產物之分析平台。利用4-胺基丁酸做為內標及胺基酸之半定量,偵測極限及定量極限分別為0.4及5.0 µM;梅納反應產物利用糠胺酸進行定量,偵測極限及定量極限分別為1.1及5.0 µM。基質匹配檢量線之相關係數皆大於 0.99,且準確度及精密度皆通過食品化學檢驗之確效規範。另以HPLC-DAD分析大豆異黃酮,與胺基酸及梅納反應產物共同作為豆漿於貯存期間品質評估之指標。一般及加速貯存試驗將豆漿分別貯存於5、25、35、45℃ 環境,分析不同時間點下,豆漿中胺基酸、梅納反應產物及大豆異黃酮之含量,藉此了解豆漿在貯存期間的營養品質變化。結果顯示豆漿中離胺酸之含量隨貯存期間先上升而後下降,接著為糠胺酸含量上升而後下降,並伴隨 CML 的出現,代表豆漿於貯存期間會發生梅納反應、導致營養品質之下降。單變量反應動力學結果顯示三項品質指標於豆漿貯存前期多呈現一級反應,胺基酸之 Q10 為 0.3-2.3,活化能為 9.7-62.9 kJ/mol;梅納反應產物之 Q10 為 1.7-2.1,活化能為 41.8-55.5 kJ/mol;大豆異黃酮之 Q10 為 1.2-2.8,活化能為 13.8-78.3 kJ/mol。本研究建立無衍生化,直接以 HPLC-ESI-Q-Orbitrap 同步分析胺基酸及梅納反應產物,用於未來評估豆漿保存期限之研究。並期望未來有更多研究豆漿中不同品質指標於貯存期間之反應動力學,給予豆漿保存期限更全面之評估。zh_TW
dc.description.abstractSoymilk is a highly nutritional food because of it contains all essential amino acids and riches in isoflavones. However, there is no adequate way to evaluate the shelf life of soymilk. A short shelf life causes the waste of food, while an inappropriate shelf life leading to the degradation of the active components; thereby influences the nutritional quality of food. Maillard reaction, reactive amino group of the amino acid reacts with the carbonyl group of the sugar, leads to the degradation of amino acids and may generates hazardous substances in food during the storage. Among the amino acids, the ε-amine in lysine is prone to undergo Maillard reaction, which generates furosine, N(ε)-carboxymethyl-lysine (CML), and N(ε)-carboxyethyl-lysine (CEL). Nevertheless, there are less analytical platform focus on the simultaneously analyze the nutritional factor and hazard substances. To comprehensive evaluate the quality of soymilk, a directed method without any derivatization was developed via HPLC-ESI-Q-Orbitrap, which could simultaneously analyze 20 amino acids and 3 Maillard reaction products. The limit of detection (LOD) and limit of quantification (LOQ) in amino acids was 0.4 and 5.0 µM, respectively; 4-aminobutanoic acid was used as the internal standard. For Maillard reaction products, furosine was used as the internal standard, and the LOD and LOQ was 1.1 and 5.0 µM, respectively. The matrix-match calibration curve is good for quantification (R > 0.99). The method is validated, according to the accuracy and precision is agreed with the validation requirements of food safety tests. In addition, the isoflavones of soymilk were analyzed using HPLC-DAD. The long-term and accelerated shelf-life test were performed in 5, 25, 35, or 45℃ to evaluate the variation in nutritional quality of soymilk. The quality indicators of soymilk during the storage are isoflavones, amino acids and the Maillard reaction products. Results showed that the content of lysine was increased first, and then decrease during the storage period. While lysine was decreasing, the content of furosine was increased and the CML was generated in the same trend. Those results indicated the Maillard reaction happened during the storage of soymilk, leading to the decrease in nutritional quality. The results of univariate reaction kinetics showed that amino acids, Maillard reaction products and isoflavones followed a first-order reaction in the early stage of storage. The Q10 and activation energy of amino acids are 0.3-2.3 and 9.4-62.9 kJ/mol, respectively. The Q10 and activation energy of Maillard reaction products are 1.7-2.1 and 41.8-55.5 kJ/mol, respectively. The Q10 and activation energy of isoflavones are 1.2-2.8 and 13.8-78.3 kJ/mol, respectively. This study established a non-derivatization method for simultaneously determination of amino acids and Maillard reaction products in soymilk using HPLC-ESI-Q-Orbitrap. This analytical platform may useful on the evaluating the quality of soymilk for assessment of the shelf life.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:38:39Z (GMT). No. of bitstreams: 1
ntu-108-R06641012-1.pdf: 13431858 bytes, checksum: fdb18b0e2400b6d349b112158714b798 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII
壹、 前言 1
貳、 文獻回顧 3
第一節、 豆漿中的成分 3
第二節、 大豆異黃酮及其分析方法 3
第三節、 胺基酸及其分析方法 6
第四節、 梅納反應產物及其分析方法 9
第五節、 反應動力學 15
第六節、 包裝食品有效日期之評估指引 17
第七節、 質譜儀 18
參、 研究動機與實驗架構 20
第一節、 研究動機 20
第二節、 實驗架構 21
肆、 實驗材料與方法 22
第一節、 實驗材料 22
第二節、 實驗方法 27
伍、 結果與討論 39
第一節、 胺基酸與梅納反應產物之分析 39
第二節、 大豆異黃酮之分析 52
第三節、 貯藏試驗 56
第四節、 反應動力學 87
陸、 結論 94
柒、 參考文獻 95
捌、 附錄 102
第一節、 胺基酸之定性結果 102
第二節、 基質效應 154
第三節、 品管圖 155
第四節、 反應因子 159
第五節、 主成分分析編碼 160
dc.language.isozh-TW
dc.subject同步分析zh_TW
dc.subject梅納反應zh_TW
dc.subject無衍生化zh_TW
dc.subject胺基酸zh_TW
dc.subject反應動力學zh_TW
dc.subjectamino acidsen
dc.subjectMaillard reactionen
dc.subjectsimultaneously analyzeen
dc.subjectreaction kineticsen
dc.subjectnon-derivatization methoden
dc.title以液相層析串聯高解析質譜同步分析豆漿中營養成分及梅納反應產物zh_TW
dc.titleSimultaneous quantitation of nutrients and Maillard reaction products in soymilk by HPLC-HRMSen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳家揚,高彩華,林哲安,邱家琪
dc.subject.keyword胺基酸,梅納反應,無衍生化,同步分析,反應動力學,zh_TW
dc.subject.keywordamino acids,Maillard reaction,simultaneously analyze,reaction kinetics,non-derivatization method,en
dc.relation.page161
dc.identifier.doi10.6342/NTU201902876
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
13.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved