請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74005完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫政彥(Cheng-Yen Wen) | |
| dc.contributor.author | Cheng-Yu Chen | en |
| dc.contributor.author | 陳承佑 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:16:30Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-28 | |
| dc.identifier.citation | 1. Frank, J., Electron tomography: methods for three-dimensional visualization of structures in the cell. Springer: 2008. 2. Lucic, V.; Forster, F.; Baumeister, W., Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem 2005, 74, 833-65. 3. Van Leer, B.; Bouchet-Marquis, C.; Cheng, H. In Three-dimensional characterization of Gd nanoparticles using STEM-in-SEM tomography in a dual-beam FIB-SEM, Scanning Microscopies 2015, International Society for Optics and Photonics: 2015; p 963606. 4. Grünewald, K.; Desai, P.; Winkler, D. C.; Heymann, J. B.; Belnap, D. M.; Baumeister, W.; Steven, A. C., Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 2003, 302 (5649), 1396-1398. 5. Radon, J., On the determination of functions from their integrals along certain manifolds. Ber. Verh, Sachs Akad Wiss. 1917, 69, 262-277. 6. Bracewell, R. N., Strip integration in radio astronomy. Aust. J. Phys. 1956, 9 (2), 198-217. 7. Jinnai, H.; Spontak, R. J., Transmission electron microtomography in polymer research. Polymer 2009, 50 (5), 1067-1087. 8. Friedrich, H.; de Jongh, P. E.; Verkleij, A. J.; de Jong, K. P., Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 2009, 109 (5), 1613-1629. 9. Hart, R. G., Electron microscopy of unstained biological material: the polytropic montage. Science 1968, 159 (3822), 1464-1467. 10. Smith, P.; Peters, T.; Bates, R., Image reconstruction from finite numbers of projections. J. Phys. A 1973, 6 (3), 361. 11. Midgley, P. A.; Weyland, M., 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96 (3-4), 413-431. 12. Radermacher, M., Weighted back-projection methods. In Electron tomography, Springer: 2007; pp 245-273. 13. Gilbert, P., Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 1972, 36 (1), 105-117. 14. Lawrence, M. C., Least-squares method of alignment using markers. In Electron tomography, Springer: 1992; pp 197-204. 15. Guckenberger, R., Determination of a common origin in the micrographs of tilt series in three-dimensional electron microscopy. Ultramicroscopy 1982, 9 (1-2), 167-173. 16. Midgley, P. A.; Dunin-Borkowski, R. E., Electron tomography and holography in materials science. Nat Mater 2009, 8 (4), 271-80. 17. Arslan, I.; Yates, T.; Browning, N.; Midgley, P., Embedded nanostructures revealed in three dimensions. Science 2005, 309 (5744), 2195-2198. 18. Kubel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T. C.; Carlsson, A.; Bradley, J., Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11 (5), 378-400. 19. Hungria, A. B.; Raja, R.; Adams, R. D.; Captain, B.; Thomas, J. M.; Midgley, P. A.; Golovko, V.; Johnson, B. F., Single‐step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew. Chem. Int. Ed. 2006, 45 (29), 4782-4785. 20. Yang, B.; Buddharaju, K.; Teo, S.; Singh, N.; Lo, G.; Kwong, D., Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 2008, 29 (7), 791-794. 21. Larrieu, G.; Guerfi, Y.; Han, X.; Clément, N., Sub-15 nm gate-all-around field effect transistors on vertical silicon nanowires. Solid·State Electron. 2017, 130, 9-14. 22. Wagner, R.; Ellis, W., Vapor-Liquid-Solid mechanism of single crystal growth (New method growth catalysis from impurity whiker epitaxial large cystals). Appl. Phys. Lett. 1964, 4. 23. Schmid, H.; Björk, M.; Knoch, J.; Riel, H.; Riess, W.; Rice, P.; Topuria, T., Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si (111) using silane. J. Appl. Phys. 2008, 103 (2), 024304. 24. Sato, S.; Kakushima, K.; Ahmet, P.; Ohmori, K.; Natori, K.; Yamada, K.; Iwai, H., Effects of corner angle of trapezoidal and triangular channel cross-sections on electrical performance of silicon nanowire field-effect transistors with semi gate-around structure. Solid·State Electron. 2011, 65, 2-8. 25. Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P., Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451 (7175), 163-167. 26. Ross, F.; Tersoff, J.; Reuter, M., Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95 (14), 146104. 27. Xu, T.; Nys, J. P.; Addad, A.; Lebedev, O. I.; Urbieta, A.; Salhi, B.; Berthe, M.; Grandidier, B.; Stiévenard, D., Faceted sidewalls of silicon nanowires: Au-induced structural reconstructions and electronic properties. Phys. Rev. B 2010, 81 (11), 115403. 28. David, T.; Buttard, D.; Schülli, T.; Dallhuin, F.; Gentile, P., Structural investigation of silicon nanowires using GIXD and GISAXS: Evidence of complex saw-tooth faceting. Surf. Sci. 2008, 602 (15), 2675-2680. 29. Hannon, a. J.; Kodambaka, S.; Ross, F.; Tromp, R., The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440 (7080), 69-71. 30. den Hertog, M. I.; Rouviere, J.-L.; Dhalluin, F.; Desré, P. J.; Gentile, P.; Ferret, P.; Oehler, F.; Baron, T., Control of gold surface diffusion on Si nanowires. Nano Lett. 2008, 8 (5), 1544-1550. 31. min Bae, J.; Lee, W.-J.; won Ma, J.; hun Kim, J.; hoon Oh, S.; Cho, M.-H.; Chul, K.; Jung, S.; Park, J., Structural evolution and carrier scattering of Si nanowires as a function of oxidation time. J. Mater. Chem. C 2015, 3 (9), 2123-2131. 32. van Aarle, W.; Palenstijn, W. J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K. J.; Sijbers, J., The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015, 157, 35-47. 33. Shepp, L. A.; Logan, B. F., The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 1974, 21 (3), 21-43. 34. MessaoudiI, C.; Boudier, T.; Sorzano, C. O. S.; Marco, S., TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 2007, 8 (1), 288. 35. Sorzano, C. O. S.; Messaoudi, C.; Eibauer, M.; Bilbao-Castro, J. R.; Hegerl, R.; Nickell, S.; Marco, S.; Carazo, J. M., Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 2009, 10 (1), 124. 36. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25 (13), 1605-1612. 37. Crowther, R. A.; DeRosier, D.; Klug, A., The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Math. Phys. Eng. Sci. 1970, 317 (1530), 319-340. 38. Liu, H.; Biegelsen, D.; Johnson, N.; Ponce, F.; Pease, R., Self‐limiting oxidation of Si nanowires. J. Vac. Sci. Technol. 1993, 11 (6), 2532-2537. 39. Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T., Structure and electronic properties of MoS 2 nanotubes. Phys. Rev. Lett. 2000, 85 (1), 146. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74005 | - |
| dc.description.abstract | 近年隨著奈米科技與半導體製程的快速發展,材料特徵尺寸的微縮,使得獲取材料三維形貌、成分和物理性質的需求提升,突顯了電子斷層掃描技術的重要性。在未來新一代可能的場效應電晶體中,矽奈米線電晶體的電性與其界面結構性質有著高度相關,這也使得對矽奈米線表面結構和截面形狀進一步了解的需求有所增加。在過去的十年中,重構運算方法的發展以及電腦計算速度的提高,使電子斷層掃描技術成為分析三維奈米材料資訊相當可靠的方法。此研究中,利用高角度環形暗場掃描穿透式電子斷層掃描技術,以聯立迭代重建法,三維重構氣-液-固機制磊晶成長之矽奈米線。此外,也利用電子斷層掃描重構技術,分析包覆化學氣相沉積成長之二硫化鉬薄層的矽奈米線結構。透過此研究,提供以穿透式電子顯微鏡斷層掃描分析技術,研究矽奈米線於電晶體元件的應用的可行性。 | zh_TW |
| dc.description.abstract | With recent advances in nanotechnology and semiconductor manufacturing, the decreasing feature sizes of devices highlight the need for electron tomography to explore the morphology, composition, and physical properties of device components in three dimensions. In next-generation field-effect transistors, the electronic properties of Si nanowire transistors highly depend on their interfacial structure. The demand of deeper knowledge about the surface structure and cross-sectional shape of Si nanowires has been increased; on this regard, the development of novel reconstruction algorithms and the increased computation speed in the last decade have improved electron tomography to be a reliable approach to 3D visualization for obtaining the analytical information. In this research, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images with the simultaneous iterative reconstruction technique (SIRT) is used to reconstruct the 3D structure of Si nanowires which are epitaxially grown on Si(111) substrates using the vapor-liquid-solid (VLS) method by chemical vapor deposition (CVD). In addition, the Si nanowires coated with a thin molybdenum disulfide (MoS2) layer by CVD are also analyzed via the tomographic reconstruction method. The feasibility of epitaxial Si nanowires for the application of nanowire transistors is discussed based on the transmission electron tomography analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:16:30Z (GMT). No. of bitstreams: 1 U0001-2601202120525700.pdf: 2790565 bytes, checksum: 36db97255fa6bf82cea67f7072ee847f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 緒論 1 Chapter 2 文獻回顧 2 2.1 電子斷層掃描 2 2.1.1 電子斷層掃描的基本介紹 2 2.1.2 中心切片定理 3 2.1.3 反投影法 5 2.1.4 照片對齊校正 7 2.1.5 掃描穿透式電子斷層掃描 9 2.2 應用於電晶體元件中的矽奈米線分析 10 2.2.1 矽奈米線於電晶體元件的應用 10 2.2.2 矽奈米線的基本性質 11 Chapter 3 實驗方法分析儀器 13 3.1 電子斷層掃描的運算 13 3.1.1 聯立迭代重建法 13 3.1.2 電子斷層掃描模擬 13 3.2 一維奈米材料的三維重構 14 3.2.1 試片製備 14 3.2.2 投影照片收集 14 3.2.3 照片對齊與旋轉軸校正 15 3.2.4 斷層掃描運算 16 3.2.5 視覺化與三維特徵分析 16 3.3 奈米線結構製備 17 3.3.1 矽奈米線的成長 17 3.3.2 矽奈米線表面優化 17 3.3.3 二硫化鉬奈米結構成長 17 Chapter 4 結果與討論 19 4.1 電子斷層掃描的運算模擬 19 4.1.1 不同迭代次數的重構比較 19 4.1.2 不同角度間距的重構比較 21 4.1.3 不同最大傾斜角度的重構比較 22 4.2 奈米線結構的電子斷層掃描分析 23 4.2.1 以VLS機制成長之矽奈米線三維結構分析 23 4.2.2 去除金催化劑之矽奈米線形貌分析 25 4.2.3 氧化後的矽奈米線分析 26 4.2.4 二硫化鉬奈米結構之三維結構分析 28 Chapter 5 結論 30 REFERENCE 31 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電子斷層掃描 | zh_TW |
| dc.subject | 矽奈米線 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 聯立迭代法 | zh_TW |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | transmission electron microscopy | en |
| dc.subject | electron tomography | en |
| dc.subject | simultaneous iterative reconstruction technique | en |
| dc.subject | molybdenum disulfide | en |
| dc.subject | silicon nanowires | en |
| dc.title | 以穿透式電子顯微鏡斷層掃描分析技術研究矽奈米線於電晶體元件的應用 | zh_TW |
| dc.title | Transmission Electron Microscopy Tomography Analysis of Silicon Nanowires for the Application of Nanowire Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王迪彥(Di-Yan Wang),李紹先(Shao-Sian Li) | |
| dc.subject.keyword | 電子斷層掃描,矽奈米線,二硫化鉬,聯立迭代法,穿透式電子顯微鏡, | zh_TW |
| dc.subject.keyword | electron tomography,silicon nanowires,molybdenum disulfide,simultaneous iterative reconstruction technique,transmission electron microscopy, | en |
| dc.relation.page | 35 | |
| dc.identifier.doi | 10.6342/NTU202100194 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2601202120525700.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
