Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73948
標題: 利用深度卷積類神經網路偵測及計算影片中魚體並測量魚體長
Detecting and Counting Harvested Fish and Measuring Fish Body Lengths in EMS Videos Using Deep Convolutional Neural Networks
作者: Chi-Hsuan Tseng
曾啟軒
指導教授: 郭彥甫(Yan-Fu Kuo)
關鍵字: 卷積類神經網路,魚體長,漁業資源管理,物件偵測,實體切割,
Convolutional neural networks,fish body length,fish resource management,object detection,instance segmentation,
出版年 : 2019
學位: 碩士
摘要: 捕撈漁獲的統計是海洋資源永續利用及管理的關鍵因素,近年來有許多船隻已經利用電子觀察員系統(EMS)來記錄漁船作業情況,接著觀察員在資料中心判讀EMS的影片並做出捕撈魚穫的統計,人工的判讀和記錄既費時又消耗大量人工,因此,本研究提出利用深度卷積神經網路自動偵測及計算影片中魚體並測量魚體長的方法,在研究中以遮罩區域卷積神經網路(Mask R-CNN)偵測並切割影片每幀中的魚體,利用時間和距離閥值計算魚體數量,接著以Mask R-CNN預測的機率和遮罩來辨識魚的類別和測量魚體長,本研究的Mask R-CNN模型在魚體偵測上達到96.46%的召回率及93.51%的平均精確率,本研究的魚體計算方法達到93.84%的召回率及77.31%的精確率,本研究在影片中魚類別辨識達到98.06%的準確率。
The statistics of harvested fish are key indicators for marine resource management and sustainability. In recent years, electronic monitoring systems (EMS) are used to record the fishing practices of vessels. The statistics of the harvested fish in the EMS videos later are manually read and collected by the operators in data centers. Manual collection is, however, time consuming, and labor intensive. This study proposes to automatically detect harvested fish, identify fish types, and measure fish body lengths in the EMS videos using deep learning. In the study, the fish in the frames of the EMS videos were detected and segmented from the background at pixel level using mask regional-based convolutional neural networks (Mask R-CNN). The counting of the fish was then determined using time thresholding and distance thresholding. Subsequently, the types and body lengths of the fish were next determined using the confidence scores and the masks, respectively, predicted by the Mask R-CNN model. The developed Mask R-CNN model reached a recall of 96.46% and a mean average precision of 93.51% in detection. The proposed method for fish counting reached a recall of 93.84% and a precision of 77.31%. The proposed method for fish type identification reached an accuracy of 98.06%.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73948
DOI: 10.6342/NTU201903433
全文授權: 有償授權
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.49 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved