請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73948完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥甫(Yan-Fu Kuo) | |
| dc.contributor.author | Chi-Hsuan Tseng | en |
| dc.contributor.author | 曾啟軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:14:38Z | - |
| dc.date.available | 2024-08-22 | |
| dc.date.copyright | 2019-08-22 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) (pp. 265-283).
Ames, R. T., Leaman, B. M., & Ames, K. L. (2007). Evaluation of video technology for monitoring of multispecies longline catches. North American Journal of Fisheries Management, 27(3), 955-964 Chollet, F. (2015). Keras. https://github.com/fchollet/keras Everingham, M., & Winn, J. (2011). The PASCAL visual object classes challenge 2012 (VOC2012) development kit. Pattern Analysis, Statistical Modelling and Computational Learning, Tech. Rep. FAO. (2017). Seafood traceability for fisheries compliance: Country-level support for catch documentation schemes. Rome: FAO. FAO. (2018). The State of World Fisheries and Aquaculture 2018 (SOFIA 2018): meeting the sustainable development goals. ROME: Food and Agriculture Organization. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Francisco, F. A., Nührenberg, P., & Jordan, A. L. (2019). A low-cost, open-source framework for tracking and behavioural analysis of animals in aquatic ecosystems. bioRxiv, 571232. French, G., Fisher, M. H., Mackiewicz, M., & Needle, C. (2015). Convolutional neural networks for counting fish in fisheries surveillance video. Proceedings of the Machine Vision of Animals and their Behaviour (MVAB), 7-1. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969). Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In Advances in neural information processing systems (pp. 2017-2025). Kindt-Larsen, L., Kirkegaard, E., & Dalskov, J. (2011). Fully documented fishery: a tool to support a catch quota management system. ICES Journal of Marine Science, 68(8), 1606-1610. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp. 396-404). Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2117-2125). Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham. Li, X., Shang, M., Qin, H., & Chen, L. (2015, October). Fast accurate fish detection and recognition of underwater images with fast r-cnn. In OCEANS 2015-MTS/IEEE Washington (pp. 1-5). IEEE. Li, X., Shang, M., Hao, J., & Yang, Z. (2016, April). Accelerating fish detection and recognition by sharing CNNs with objectness learning. In OCEANS 2016-Shanghai (pp. 1-5). IEEE. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440). Manning, C. D., Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT press. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814). Neubeck, A., & Van Gool, L. (2006, August). Efficient non-maximum suppression. In 18th International Conference on Pattern Recognition (ICPR'06) (Vol. 3, pp. 850-855). IEEE. Qin, H., Li, X., Liang, J., Peng, Y., & Zhang, C. (2016). DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing, 187, 49-58. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99). Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: a database and web-based tool for image annotation. International journal of computer vision, 77(1-3), 157-173. Siddiqui, S. A., Salman, A., Malik, M. I., Shafait, F., Mian, A., Shortis, M. R., ... & Handling editor: Howard Browman. (2017). Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES Journal of Marine Science, 75(1), 374-389. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Strachan, N. J. C. (1993). Recognition of fish species by colour and shape. Image and vision computing, 11(1), 2-10. Sun, X., Shi, J., Dong, J., & Wang, X. (2016, October). Fish recognition from low-resolution underwater images. In 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 471-476). IEEE. Sung, M., Yu, S. C., & Girdhar, Y. (2017, June). Vision based real-time fish detection using convolutional neural network. In OCEANS 2017-Aberdeen (pp. 1-6). IEEE. Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial (p. 130). Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica. Zheng, Z., Guo, C., Zheng, X., Yu, Z., Wang, W., Zheng, H., ... & Zheng, B. (2018, May). Fish Recognition from a Vessel Camera Using Deep Convolutional Neural Network and Data Augmentation. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO) (pp. 1-5). IEEE. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73948 | - |
| dc.description.abstract | 捕撈漁獲的統計是海洋資源永續利用及管理的關鍵因素,近年來有許多船隻已經利用電子觀察員系統(EMS)來記錄漁船作業情況,接著觀察員在資料中心判讀EMS的影片並做出捕撈魚穫的統計,人工的判讀和記錄既費時又消耗大量人工,因此,本研究提出利用深度卷積神經網路自動偵測及計算影片中魚體並測量魚體長的方法,在研究中以遮罩區域卷積神經網路(Mask R-CNN)偵測並切割影片每幀中的魚體,利用時間和距離閥值計算魚體數量,接著以Mask R-CNN預測的機率和遮罩來辨識魚的類別和測量魚體長,本研究的Mask R-CNN模型在魚體偵測上達到96.46%的召回率及93.51%的平均精確率,本研究的魚體計算方法達到93.84%的召回率及77.31%的精確率,本研究在影片中魚類別辨識達到98.06%的準確率。 | zh_TW |
| dc.description.abstract | The statistics of harvested fish are key indicators for marine resource management and sustainability. In recent years, electronic monitoring systems (EMS) are used to record the fishing practices of vessels. The statistics of the harvested fish in the EMS videos later are manually read and collected by the operators in data centers. Manual collection is, however, time consuming, and labor intensive. This study proposes to automatically detect harvested fish, identify fish types, and measure fish body lengths in the EMS videos using deep learning. In the study, the fish in the frames of the EMS videos were detected and segmented from the background at pixel level using mask regional-based convolutional neural networks (Mask R-CNN). The counting of the fish was then determined using time thresholding and distance thresholding. Subsequently, the types and body lengths of the fish were next determined using the confidence scores and the masks, respectively, predicted by the Mask R-CNN model. The developed Mask R-CNN model reached a recall of 96.46% and a mean average precision of 93.51% in detection. The proposed method for fish counting reached a recall of 93.84% and a precision of 77.31%. The proposed method for fish type identification reached an accuracy of 98.06%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:14:38Z (GMT). No. of bitstreams: 1 ntu-108-R06631004-1.pdf: 2552562 bytes, checksum: 9148208b788162dce385c91d90b48b1c (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives 1 1.3 Organization 2 CHAPTER 2. LITERATURE REVIEW 3 2.1 Image-processing-based approaches for fish detection 3 2.2 Fish detection and counting using deep learning 4 CHAPTER 3. MATERIALS AND METHODS 5 3.1 Image collection and training data preprocessing 5 3.2 Architecture of Mask R-CNN and training methodology 6 3.3 Fish counting in the videos 9 3.4 Fish type identification and body length measurement 10 CHAPTER 4. RESULTS AND DISCUSSION 12 4.1 The training loss of the Mask R-CNN model 12 4.2 Feature maps of the developed Mask R-CNN model 12 4.3 The performance of fish and buoy detection 14 4.4 Failure case study of fish and buoy detection 15 4.5 The performance of the fish counting 17 4.6 The performance of fish type identification 19 4.7 The performance of fish body length estimation 21 CHAPTER 5. CONCLUSION 23 REFERENCES 24 | |
| dc.language.iso | en | |
| dc.subject | 卷積類神經網路 | zh_TW |
| dc.subject | 魚體長 | zh_TW |
| dc.subject | 漁業資源管理 | zh_TW |
| dc.subject | 物件偵測 | zh_TW |
| dc.subject | 實體切割 | zh_TW |
| dc.subject | fish resource management | en |
| dc.subject | instance segmentation | en |
| dc.subject | Convolutional neural networks | en |
| dc.subject | fish body length | en |
| dc.subject | object detection | en |
| dc.title | 利用深度卷積類神經網路偵測及計算影片中魚體並測量魚體長 | zh_TW |
| dc.title | Detecting and Counting Harvested Fish and Measuring Fish Body Lengths in EMS Videos Using Deep Convolutional Neural Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭文皇(Wen-Huang Cheng),花凱龍(Kai-Lung Hua),謝清祿(Ching-Lu Hsieh) | |
| dc.subject.keyword | 卷積類神經網路,魚體長,漁業資源管理,物件偵測,實體切割, | zh_TW |
| dc.subject.keyword | Convolutional neural networks,fish body length,fish resource management,object detection,instance segmentation, | en |
| dc.relation.page | 28 | |
| dc.identifier.doi | 10.6342/NTU201903433 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
