Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73806Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 郭錦龍(Chin-Lung Kuo) | |
| dc.contributor.author | Ching-Yu Huang | en |
| dc.contributor.author | 黃靖瑜 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:10:41Z | - |
| dc.date.available | 2022-08-19 | |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | [1] Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J. M. (2012). Li– O2 and Li–S batteries with high energy storage. Nature materials, 11(1), 19.
[2] Chen, R., Zhao, T., & Wu, F. (2015). From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chemical Communications, 51(1), 18-33. [3] Manthiram, A., Fu, Y., Chung, S. H., Zu, C., & Su, Y. S. (2014). Rechargeable lithium–sulfur batteries. Chemical reviews, 114(23), 11751-11787. [4] Ji, X., & Nazar, L. F. (2010). Advances in Li–S batteries. Journal of Materials Chemistry, 20(44), 9821-9826. [5] Chen, X., Hou, T., Persson, K. A., & Zhang, Q. (2019). Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives. Materials Today, 22, 142-158. [6] Peng, H. J., Huang, J. Q., Cheng, X. B., & Zhang, Q. (2017). Review on high‐loading and high‐energy lithium–sulfur batteries. Advanced Energy Materials, 7(24), 1700260. [7] Wild, M., O'neill, L., Zhang, T., Purkayastha, R., Minton, G., Marinescu, M., & Offer, G. J. (2015). Lithium sulfur batteries, a mechanistic review. Energy & Environmental Science, 8(12), 3477-3494. [8] Seh, Z. W., Sun, Y., Zhang, Q., & Cui, Y. (2016). Designing high-energy lithium–sulfur batteries. Chemical Society Reviews, 45(20), 5605-5634. [9] Guo, Y., Zhao, G., Wu, N., Zhang, Y., Xiang, M., Wang, B., ... & Wu, H. (2016). Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li–S batteries. ACS applied materials & interfaces, 8(50), 34185-34193. [10] Zhou, G., Paek, E., Hwang, G. S., & Manthiram, A. (2015). Long-life Li/ polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature communications, 6, 7760. [11] Manthiram, A., Fu, Y., & Su, Y. S. (2012). Challenges and prospects of lithium–sulfur batteries. Accounts of chemical research, 46(5), 1125-1134. [12] Fang, R., Zhao, S., Sun, Z., Wang, D. W., Cheng, H. M., & Li, F. (2017). More reliable lithium‐sulfur batteries: status, solutions and prospects. Advanced materials, 29(48), 1606823. [13] Evers, S., & Nazar, L. F. (2012). Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chemical Communications, 48(9), 1233-1235. [14] Wang, J. Z., Lu, L., Choucair, M., Stride, J. A., Xu, X., & Liu, H. K. (2011). Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 196(16), 7030-7034. [15] Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., ... & Dai, H. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano letters, 11(7), 2644-2647. [16] Cao, Y., Li, X., Aksay, I. A., Lemmon, J., Nie, Z., Yang, Z., & Liu, J. (2011). Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Physical chemistry chemical physics, 13(17), 7660-7665. [17] Wang, J. L., Yang, J., Xie, J. Y., Xu, N. X., & Li, Y. (2002). Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochemistry Communications, 4(6), 499-502. [18] Wang, J., Liu, L., Ling, Z., Yang, J., Wan, C., & Jiang, C. (2003). Polymer lithium cells with sulfur composites as cathode materials. Electrochimica Acta, 48(13), 1861-1867. [19] Liang, C., Dudney, N. J., & Howe, J. Y. (2009). Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chemistry of Materials, 21(19), 4724-4730. [20] Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., & Cui, Y. (2011). Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano letters, 11(10), 4462-4467. [21] Zheng, W., Liu, Y. W., Hu, X. G., & Zhang, C. F. (2006). Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochimica Acta, 51(7), 1330-1335. [22] Yuan, L., Yuan, H., Qiu, X., Chen, L., & Zhu, W. (2009). Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. Journal of Power Sources, 189(2), 1141-1146. [23] Ahn, W., Kim, K. B., Jung, K. N., Shin, K. H., & Jin, C. S. (2012). Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. Journal of Power Sources, 202, 394-399. [24] Jand, S. P., Chen, Y., & Kaghazchi, P. (2016). Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene. Journal of Power Sources, 308, 166-171. [25] Li, Q., Zhang, Z., Guo, Z., Lai, Y., Zhang, K., & Li, J. (2014). Improved cyclability of lithium–sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@ nitrogen-doped porous carbon core–shell composite. Carbon, 78, 1-9. [26] Wang, X., Zhang, Z., Qu, Y., Lai, Y., & Li, J. (2014). Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. Journal of Power Sources, 256, 361-368. [27] Sun, F., Wang, J., Chen, H., Li, W., Qiao, W., Long, D., & Ling, L. (2013). High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS applied materials & interfaces, 5(12), 5630-5638. [28] Wang, C., Su, K., Wan, W., Guo, H., Zhou, H., Chen, J., ... & Huang, Y. (2014). High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2(14), 5018-5023. [29] Ding, K., Bu, Y., Liu, Q., Li, T., Meng, K., & Wang, Y. (2015). Ternary-layered nitrogen-doped graphene/sulfur/polyaniline nanoarchitecture for the high-performance of lithium–sulfur batteries. Journal of Materials Chemistry A, 3(15), 8022-8027. [30] Han, K., Shen, J., Hao, S., Ye, H., Wolverton, C., Kung, M. C., & Kung, H. H. (2014). Free standing nitrogen doped graphene paper as electrodes for high‐performance lithium/dissolved polysulfide batteries. ChemSusChem, 7(9), 2545-2553. [31] Yang, J., Xie, J., Zhou, X., Zou, Y., Tang, J., Wang, S., ... & Wang, L. (2014). Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. The Journal of Physical Chemistry C, 118(4), 1800-1807. [32] Qiu, Y., Li, W., Zhao, W., Li, G., Hou, Y., Liu, M., ... & Yang, S. (2014). High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano letters, 14(8), 4821-4827. [33] Peng, H. J., Hou, T. Z., Zhang, Q., Huang, J. Q., Cheng, X. B., Guo, M. Q., ... & Wei, F. (2014). Strongly coupled interfaces between a heterogeneous carbon host and a sulfur containing guest for highly stable lithium sulfur batteries: mechanistic insight into capacity degradation. Advanced Materials Interfaces, 1(7), 1400227. [34] Tang, C., Zhang, Q., Zhao, M. Q., Huang, J. Q., Cheng, X. B., Tian, G. L., ... & Wei, F. (2014). Nitrogen Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High Rate Lithium Sulfur Batteries. Advanced materials, 26(35), 6100-6105. [35] Rao, D., Wang, Y., Zhang, L., Yao, S., Qian, X., Xi, X., ... & Lu, R. (2016). Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution. Carbon, 110, 207-214. [36] Yin, L. C., Liang, J., Zhou, G. M., Li, F., Saito, R., & Cheng, H. M. (2016). Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy, 25, 203-210. [37] Liu, C. Y., & Li, E. Y. (2018). Adsorption Mechanisms of Lithium Polysulfides on Graphene-Based Interlayers in Lithium Sulfur Batteries. ACS Applied Energy Materials, 1(2), 455-463. [38] Yang, C. P., Yin, Y. X., Ye, H., Jiang, K. C., Zhang, J., & Guo, Y. G. (2014). Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS applied materials & interfaces, 6(11), 8789-8795. [39] Xie, Y., Meng, Z., Cai, T., & Han, W. Q. (2015). Effect of boron-doping on the graphene aerogel used as cathode for the lithium–sulfur battery. ACS applied materials & interfaces, 7(45), 25202-25210. [40] Wu, F., Qian, J., Wu, W., Ye, Y., Sun, Z., Xu, B., ... & Chen, R. (2017). Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 10(2), 426-436. [41] Shi, P., Wang, Y., Liang, X., Sun, Y., Cheng, S., Chen, C., & Xiang, H. (2018). Simultaneously Exfoliated Boron-Doped Graphene Sheets To Encapsulate Sulfur for Applications in Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering, 6(8), 9661-9670. [42] Ai, W., Li, J., Du, Z., Zou, C., Du, H., Xu, X., ... & Huang, W. (2018). Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Research, 11(9), 4562-4573. [43] Yuan, S., Bao, J. L., Wang, L., Xia, Y., Truhlar, D. G., & Wang, Y. (2016). Graphene‐Supported Nitrogen and Boron Rich Carbon Layer for Improved Performance of Lithium–Sulfur Batteries Due to Enhanced Chemisorption of Lithium Polysulfides. Advanced Energy Materials, 6(5), 1501733. [44] Chen, L., Feng, J., Zhou, H., Fu, C., Wang, G., Yang, L., ... & Kuang, Y. (2017). Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes. Journal of Materials Chemistry A, 5(16), 7403-7415. [45] Cai, W., Zhou, J., Li, G., Zhang, K., Liu, X., Wang, C., ... & Qian, Y. (2016). B, N-Co-doped graphene supported sulfur for superior stable Li–S half cell and Ge–S full battery. ACS applied materials & interfaces, 8(41), 27679-27687. [46] , J., Pitcheri, R., Kang, T., Jiao, C., Guo, Y., Li, J., & Qiu, Y. (2019). A polysulfide-trapping interlayer constructed by boron and nitrogen co-doped carbon nanofibers for long-life lithium sulfur batteries. Journal of Electroanalytical Chemistry, 833, 151-159. [47] Shao, Y., Wang, Q., Hu, L., Pan, H., & Shi, X. (2019). BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights. Carbon, 149, 530-537. [48] Li, F., Su, Y., & Zhao, J. (2016). Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li–S batteries. Physical Chemistry Chemical Physics, 18(36), 25241-25248. [49] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. [50] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. [51] Thomas, L. H. (1927, January). The calculation of atomic fields. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 23, No. 5, pp. 542-548). Cambridge University Press. [52] Latter, R. (1955). Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential. Physical Review, 99(2), 510. [53] Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799. [54] Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104. [55] Verlet, L. (1967). Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159(1), 98. [56] Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1), 511-519. [57] Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 31(3), 1695. [58] Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1), 117-129. [59] Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 113(18), 6378-6396. [60] Ghosh, K., Kumar, M., Maruyama, T., & Ando, Y. (2010). Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 48(1), 191-200. [61] Fu, L., Tang, K., Song, K., van Aken, P. A., Yu, Y., & Maier, J. (2014). Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale, 6(3), 1384-1389. [62] Hou, Z., Wang, X., Ikeda, T., Terakura, K., Oshima, M., & Kakimoto, M. A. (2013). Electronic structure of N-doped graphene with native point defects. Physical Review B, 87(16), 165401. [63] Zhao, L., Levendorf, M., Goncher, S., Schiros, T., Palova, L., Zabet-Khosousi, A., ... & Hybertsen, M. (2013). Local atomic and electronic structure of boron chemical doping in monolayer graphene. Nano letters, 13(10), 4659-4665. [64] Wang, L., Sofer, Z., Šimek, P., Tomandl, I., & Pumera, M. (2013). Boron-doped graphene: scalable and tunable p-type carrier concentration doping. The Journal of Physical Chemistry C, 117(44), 23251-23257. [65] Li, X., Fan, L., Li, Z., Wang, K., Zhong, M., Wei, J., ... & Zhu, H. (2012). Boron doping of graphene for graphene–silicon p–n junction solar cells. Advanced Energy Materials, 2(4), 425-429. [66] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. [67] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47:558, 1993. [68] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 49:14251, 1994. [69] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6:15, 1996. [70] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169, 1996. [71] Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953. [72] Grimme, S. (2006). Semiempirical GGA type density functional constructed with a long range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799. [73] Scalmani, G., & Frisch, M. J. (2010). Continuous surface charge polarizable continuum models of solvation. I. General formalism. The Journal of chemical physics, 132(11), 114110. [74] Boys, S. F., & Bernardi, F. D. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566. [75] Gaussian 09, Revision A.02, M. J. Frisch et al. Gaussian, Inc., Wallingford CT, 2016. [76] Riley, K. E., Vondrášek, J., & Hobza, P. (2007). Performance of the DFT-D method, paired with the PCM implicit solvation model, for the computation of interaction energies of solvated complexes of biological interest. Physical Chemistry Chemical Physics, 9(41), 5555-5560. [77] Jung, H. S., Pradhan, T., Han, J. H., Heo, K. J., Lee, J. H., Kang, C., & Kim, J. S. (2012). Molecular modulated cysteine-selective fluorescent probe. Biomaterials, 33(33), 8495-8502. [78] Gibson, D. J., & van Mourik, T. (2017). Stacking with the unnatural DNA base 6-ethynylpyridone. Chemical Physics Letters, 668, 7-13. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73806 | - |
| dc.description.abstract | 本研究利用第一原理探討硼、氮摻雜對於鋰硫電池中石墨烯正極材料穩定多硫化合物的機制與影響。多硫化合物為鋰硫電池放電過程中會溶於電解液的中間產物,若能有效將其吸附於石墨烯表面,則能有效提升鋰硫電池的循環能力。本研究第一部分討論並比較純硼、純氮摻雜與缺陷對石墨烯穩定多硫化合物的能力之影響。第二部分則討論硼、氮共同摻雜石墨烯吸附多硫化合物的行為與機制。
第一部份的研究為比較純硼與純氮在吸附多硫化合物的行為與機制差異,解釋為何實驗上觀察到少量硼摻雜的循環能力優於大量氮摻雜。首先研究的是硼、氮摻雜在石墨烯中的排列結構。結果顯示在沒有空缺時,氮原子傾向於遠離彼此,而硼則會傾向於聚集成一區域,因此只要少量的硼摻雜就可以在局域生成高硼濃度的區域。接下來使用前面所得的結構探討其對於多硫化合物的吸附能力,結果顯示氮摻雜只有在與兩顆碳鍵結的位置中有較強的吸附能,相反的硼摻雜只要濃度夠高就可以提供相當的吸附能,因此硼摻雜中能提升吸附能的比例較氮大上許多。此外在氮摻雜吸附多硫化合物的結構中觀察到鋰會脫離多硫化合物並直接吸附到石墨烯上,這顯示在實際放電過程中會有鋰先與石墨烯吸附後再與硫反應生成多硫化合物,因此實際情形應是多硫化合物吸附在含鋰的石墨烯上,結果顯示當石墨烯上已經有鋰時會使多硫化合物的吸附能下降,表示前面計算得到氮摻雜的吸附能應是被高估的,而這種情況並不會發生在硼摻雜的結構中。此外,本文也比較硼、氮摻雜結構吸附多顆多硫化合物的能力,結果顯示在相同摻雜濃度下,硼摻雜結構能吸附多硫化合物的數目上遠大於氮摻雜的結構。總結來說,硼摻雜結構可以較氮摻雜有較好的循環能力有四個原因,分別為摻雜原子傾向於聚集、較多的可吸附結構、不會有鋰先與石墨烯吸附與較強吸附多顆多硫化合物的能力。 第二部份主要討論硼、氮共同摻雜對於穩定多硫化合物之機制。首先同樣是找尋較穩定的摻雜結構,結果顯示在沒有缺陷時,硼、氮之間形成鍵結聚集成一區為最穩定的結構。但是即使不形成硼-氮鍵結,兩種摻雜元素之間仍可以使彼此摻雜所需能量降低,這顯示硼、氮共同摻雜較純硼或氮摻雜更容易達到高摻雜濃度。另外在摻雜結構方面有一個有趣的發現,在純氮或硼的系統中,氮摻雜的空缺都較硼摻雜空缺的形成能低上許多。但是在共同摻雜的空缺中,反而是硼原子在空缺周圍較穩定。接下來同樣使用前面所得的摻雜結構討論其吸附多硫化合物的能力,結果顯示在沒有空缺的情況下,過往實驗中認為可以吸附多硫化合物的硼、氮鍵結結構實際上無法吸附多硫化合物,這是由於氮摻雜抵消硼摻雜產生的p型摻雜效果。因此在沒有空缺的情況下,只有在硼、氮之間沒有形成鍵結且硼聚集的結構有辦法吸附多硫化合物。至於在有空缺的結構部份分為在氮摻雜空缺旁加入硼與硼摻雜空缺旁加入氮兩種情況作討論。在氮摻雜空缺旁加入硼的結果顯示硼加入可以有效提升該缺陷對於多硫化合物的吸附能,且即使在第一部份提到預先有鋰吸附的結構仍可提供一定的吸附能,但硼的加入同時會使該結構的形成能上升,使其不易形成,甚至更傾向於生成沒有空缺的結構。而在硼摻雜的結構中,發現隨著氮的加入該結構對多硫化合物的吸附能會逐漸下降,唯有在硼濃度高於氮時才能提供足夠的吸附能,但氮摻雜的加入同時會使該結構形成能下降,使其越容易形成,甚至較形成沒有空缺的結構來的容易。總結來說,以材料設計的角度出發在製備硼、氮共同摻雜的石墨烯做為鋰硫電池正極材料時,應適當控制條件使硼濃度大於氮,使其可以在達到高摻雜濃度的同時不會生成無法吸附多硫化合物的缺陷結構。 | zh_TW |
| dc.description.abstract | In this thesis, first principles calculations are employed to explore stabilization behaviors of lithium polysulfides on B, N doped graphene. Lithium polysulfides are soluble intermediates produced by discharging process of Li-S batteries. If the substrates can adsorb lithium polysulfides, the cycle performance of Li-S batteries can be improved. Therefore, it would be of great interest to develop detailed atomistic scale understanding of this materials system in many fundamental aspects, especially for the interactions between lithium polysulfides and substrate.
In the first part of this thesis, we investigated the adsorption behaviors of lithium polysulfides on pure B and N doped graphene. The doping configurations of pure B and N doped graphene were first studied. The graphitic N dopants prefer to stay away from each other. In contrast, graphitic B prefer to stay together, which makes it easier to reach high dopant contents in local area. The adsorption energies of lithium polysulfides on substrates with low formation energies were calculated. The result shows that N-doped graphene can afford strong binding energy only if N dopants locate at two-fold bonded sites with vacancies. However, B-doped graphene can adsorb lithium polysulfides no matter what sites B are located. In addition, we found that one of Li would be grabbed from lithium polysulfides to N-doped substrates with vacancy. Thus, in the real discharging process, Li will first bind to substrate then interact with sulfur. So the lithium polysulfides in that kind of system will adsorb on substrate with trapped Li. Our result indicates that Li-trapping effect will lower the binding energy of lithium polysulfides, revealing that the adsorption energies calculated in previous section of N-doped graphene are overestimated. We also studied the ability of substrates to adsorb multiple lithium polysulfides. The result shows that B-doped graphene can bind more lithium polysulfides than N-doped graphene, which is one of the advantage to B-doped substrates. In summary, B is a better dopant than N due to four reasons: preference of dopant clustering, more dopant configurations capable for adsorbing lithium polysulfides, no Li-trapping effect and stronger ability to adsorb multiple lithium polysulfides. In the second part of this thesis, we studied the anchoring mechanism of lithium polysulfides on B, N co-doped graphene. The dopant configurations are first investigated. Our result indicates that B and N can synergically reduce the formation energies of substrates, showing that high dopant contents can be easily reached. As for adsorption energy calculations, our result show that structures with B-N pairs, which thought to be able to adsorb lithium polysulfides by previous experimental studies, cannot afford strong adsorption energy due to the cancellation of p-type doping effect by N dopants. Instead, the structures without B-N pair and having more graphitic B dopants than N can anchor the lithium polysulfides. We also explored the effect of B to N-doped vacancy and the effect of N to B-doped vacancy. Adsorption energies of N-doped vacancy significantly increase with the increasing B contents. Even after Li-trapped, the substrates could still adsorb lithium polysulfides. However, the formation energies of those structures become higher in the meantime. On the other hand, with the increasing N contents, adsorption energies of B-doped vacancy decrease and the formation energies of those structures also decrease. In the view of materials design, graphene with more boron than nitrogen dopants are better cathode materials for Li-S batteries, which could not only reach high dopant concentration but also creating structures that can strongly anchor lithium polysulfides. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:41Z (GMT). No. of bitstreams: 1 ntu-108-R06527036-1.pdf: 14421938 bytes, checksum: a69481227ba4409540b6ca26c43d1e28 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv Contents vi List of Figures ix List of Tables xv Chapter 1. Introduction 1 Chapter 2. Theoretical Background 7 2.1 First principles calculation 7 2.2 Density functional theory (DFT) 7 2.2.1 Thomas-Fermi model 8 2.2.2 Hohenberg-Kohn theorem 9 2.2.3 Kohn-Sham equation 10 2.2.4 Exchange-correlation functional 11 2.2.5 Self-consistent field method 12 2.2.6 Pseudopotential 12 2.2.7 Dispersion corrections for density functional theory 13 2.3 Molecular dynamics 14 2.3.1 Verlet algorithm 14 2.3.2 Nosé-Hoover thermostat 15 2.4 Solvent models 15 2.4.1 Introduction of Solvent models 15 2.4.2 Explicit solvent models 16 2.4.3 Implicit solvent models 16 Chapter 3. Stabilization Mechanisms of Lithium Polysulfide on Pristine, N-doped and B-doped Defective Graphene 19 3.1 Introduction 19 3.2 Computational details 23 3.2.1. Melt-and-quench procedures to construct lithium polysulfides 23 3.2.2. Searching dopants configurations on defective graphene 25 3.2.3. Adsorption configurations searching processes and calculations of adsorption energy 25 3.2.4. Calculating adsorption energy under solvent environments 26 3.3 Results and discussion 28 3.3.1. Structures of lithium polysulfides 28 3.3.2. Dopant and defect configurations on graphene 30 3.3.3. Lithium polysulfides adsorption on un-doped graphene 37 3.3.4. Lithium polysulfides adsorption on N-doped graphene 40 3.3.5. Lithium polysulfides adsorption on B-doped graphene 50 3.3.6. Charge transfer and electronic structures analysis 59 3.3.7. Lithium trapping effect on polysulfides adsorption 72 3.3.8. Multiple lithium polysulfides adsorption on B-doped or N-doped graphene 76 3.3.9. Lithium polysulfides adsorption under solvent environments 86 3.4 Summary 88 Chapter 4. Anchoring Effects of Lithium Polysulfide on B, N Co-doped Defective Graphene 89 4.1 Introduction 89 4.2 Computational details 90 4.3 Results and discussion 91 4.3.1. Structures of B, N co-doped graphene 91 4.3.2. Lithium polysulfides adsorption on graphitic B, N co-doped graphene without vacancy 101 4.3.3. Lithium polysulfides adsorption on equal concentration B, N co-doped vacancy 107 4.3.4. Effects of N on B-doped vacancies 111 4.3.5. Effects of B on N-doped vacancies 115 4.3.6. Lithium trapping effect on polysulfides adsorption on B, N co-doped graphene 119 4.4 Summary 123 Chapter 5. Conclusion 124 Reference 126 | |
| dc.language.iso | en | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 鋰硫電池 | zh_TW |
| dc.subject | Lithium sulfur battery | en |
| dc.subject | Graphene | en |
| dc.subject | First Principles Study | en |
| dc.title | 以第一原理計算探討石墨烯中硼、氮摻雜對多硫化合物穩定機制之影響 | zh_TW |
| dc.title | First Principles Study of Lithium Polysulfide stabilization on B/N Doped Graphene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳鉉忠,許文東,邢正蓉,姜翰昕 | |
| dc.subject.keyword | 鋰硫電池,石墨烯,第一原理計算, | zh_TW |
| dc.subject.keyword | Lithium sulfur battery,Graphene,First Principles Study, | en |
| dc.relation.page | 133 | |
| dc.identifier.doi | 10.6342/NTU201903818 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 14.08 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
