Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73682
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽(Feng-Yu Tsai)
dc.contributor.authorYi-Yang Weien
dc.contributor.author衛怡揚zh_TW
dc.date.accessioned2021-06-17T08:07:59Z-
dc.date.available2019-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-18
dc.identifier.citation1. Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324–1338 (2007).
2. Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. Electron Transport Materials for Organic Light-Emitting Diodes. Chem. Mater. 16, 4556–4573 (2004).
3. Zaumseil, J. & Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 107, 1296–1323 (2007).
4. Lange, U., Roznyatovskaya, N. V. & Mirsky, V. M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614, 1–26 (2008).
5. MUHAMMAD MUMTAZ. Synthesis of poly(3,4-ethylenedioxythiophene), polyaniline and their metal-composite nanoobjects by dispersion polymerization. L’Université bordeaux-1 école doctorale des sciences chimiques Docteur Thèse (2009).
6. Heywang, G. & Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Advanced Materials 4, 116–118 (1992).
7. Ahonen, H. J., Lukkari, J. & Kankare, J. n- and p-Doped Poly(3,4-ethylenedioxythiophene):  Two Electronically Conducting States of the Polymer. Macromolecules 33, 6787–6793 (2000).
8. Reynolds, J. R. et al. Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices. Synthetic Metals 85, 1295–1298 (1997).
9. Cornil, J., Dos Santos, D. A., Beljonne, D. & Bredas, J. L. Electronic Structure of Phenylene Vinylene Oligomers: Influence of Donor/Acceptor Substitutions. J. Phys. Chem. 99, 5604–5611 (1995).
10. Aleshin, A. N., Kiebooms, R. & Heeger, A. J. Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene). Synthetic Metals 101, 369–370 (1999).
11. Andersson, P. et al. Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper. Advanced Materials 14, 1460–1464 (2002).
12. Ashizawa, S., Shinohara, Y., Shindo, H., Watanabe, Y. & Okuzaki, H. Polymer FET with a conducting channel. Synthetic Metals 153, 41–44 (2005).
13. Elschner, A. et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals 111–112, 139–143 (2000).
14. Carter, S. A., Angelopoulos, M., Karg, S., Brock, P. J. & Scott, J. C. Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70, 2067–2069 (1997).
15. Aernouts, T. et al. Printable anodes for flexible organic solar cell modules. Thin Solid Films 451–452, 22–25 (2004).
16. Dietrich, M., Heinze, J., Heywang, G. & Jonas, F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. Journal of Electroanalytical Chemistry 369, 87–92 (1994).
17. Jonas, F. & Morrison, J. T. 3,4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties. Synthetic Metals 85, 1397–1398 (1997).
18. Sakmeche, N. et al. Anionic micelles; a new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes. Chemical Communications 0, 2723–2724 (1996).
19. Sakmeche, N. et al. Application of sodium dodecylsulfate (SDS) micellar solution as an organized medium for electropolymerization of thiophene derivatives in water. Synthetic Metals 84, 191–192 (1997).
20. Yamato, H. et al. Synthesis of free-standing poly(3,4-ethylenedioxythiophene) conducting polymer films on a pilot scale. Synthetic Metals 83, 125–130 (1996).
21. Gustafsson, J. C., Liedberg, B. & Inganäs, O. In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell. Solid State Ionics 69, 145–152 (1994).
22. Sakmeche, N. et al. Improvement of the Electrosynthesis and Physicochemical Properties of Poly(3,4-ethylenedioxythiophene) Using a Sodium Dodecyl Sulfate Micellar Aqueous Medium. Langmuir 15, 2566–2574 (1999).
23. Cui, X. & Martin, D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and Actuators B: Chemical 89, 92–102 (2003).
24. Jonas, F., Krafft, W. & Muys, B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties. Macromolecular Symposia 100, 169–173 (1995).
25. Pei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351 (1994).
26. Kudoh, Y., Akami, K. & Matsuya, Y. Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative. Synthetic Metals 95, 191–196 (1998).
27. de Leeuw, D. M., Kraakman, P. A., Bongaerts, P. F. G., Mutsaers, C. M. J. & Klaassen, D. B. M. Electroplating of conductive polymers for the metallization of insulators. Synthetic Metals 66, 263–273 (1994).
28. Skotheim, T. A., Reynolds, J. & Reynolds, J. Conjugated Polymers : Processing and Applications. (CRC Press, 2006). doi:10.1201/b10739
29. Im, S. G. & Gleason, K. K. Systematic Control of the Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) via Oxidative Chemical Vapor Deposition. Macromolecules 40, 6552–6556 (2007).
30. Bhattacharyya, D., Howden, R. M., Borrelli, D. C. & Gleason, K. K. Vapor phase oxidative synthesis of conjugated polymers and applications. Journal of Polymer Science Part B: Polymer Physics 50, 1329–1351 (2012).
31. Ali, M. A., Kim, H. H., Lee, C. Y., Soh, H. S. & Lee, J. G. Effects of the FeCl3 concentration on the polymerization of conductive poly(3,4-ethylenedioxythiophene) thin films on (3-aminopropyl) trimethoxysilane monolayer-coated SiO2 surfaces. Met. Mater. Int. 15, 977–981 (2009).
32. Winther-Jensen, B., Chen, J., West, K. & Wallace, G. Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. Macromolecules 37, 5930–5935 (2004).
33. Subramanian, P., Clark, N., Winther-Jensen, B., MacFarlane, D. & Spiccia, L. Vapour-Phase Polymerization of Pyrrole and 3,4-Ethylenedioxythiophene Using Iron(iii) 2,4,6-Trimethylbenzenesulfonate. Aust. J. Chem. 62, 133–139 (2009).
34. Subramanian, P. et al. Vapour phase polymerisation of pyrrole induced by iron(III) alkylbenzenesulfonate salt oxidising agents. Synthetic Metals 158, 704–711 (2008).
35. Lock, J. P., Im, S. G. & Gleason, K. K. Oxidative Chemical Vapor Deposition of Electrically Conducting Poly(3,4-ethylenedioxythiophene) Films. Macromolecules 39, 5326–5329 (2006).
36. Winther-Jensen, B., Breiby, D. W. & West, K. Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III)tosylate. Synthetic Metals 152, 1–4 (2005).
37. Fabretto, M., Müller, M., Zuber, K. & Murphy, P. Influence of PEG-ran-PPG Surfactant on Vapour Phase Polymerised PEDOT Thin Films. Macromolecular Rapid Communications 30, 1846–1851 (2009).
38. Fabretto, M. et al. High conductivity PEDOT resulting from glycol/oxidant complex and glycol/polymer intercalation during vacuum vapour phase polymerisation. Polymer 52, 1725–1730 (2011).
39. Brooke, R. et al. Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in Materials Science 86, 127–146 (2017).
40. Coclite, A. M. et al. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. Weinheim 25, 5392–5423 (2013).
41. Heydari Gharahcheshmeh, M. & Gleason, K. K. Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials. Advanced Materials Interfaces 6, 1801564 (2019).
42. Castro‐Carranza, A. et al. Effects of FeCl3 as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/pc–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. Journal of Polymer Science Part B: Polymer Physics 54, 1537–1544 (2016).
43. M. Howden, R., D. McVay, E. & K. Gleason, K. oCVD poly(3,4-ethylenedioxythiophene) conductivity and lifetime enhancement via acid rinse dopant exchange. Journal of Materials Chemistry A 1, 1334–1340 (2013).
44. Chelawat, H., Vaddiraju, S. & Gleason, K. Conformal, Conducting Poly(3,4-ethylenedioxythiophene) Thin Films Deposited Using Bromine as the Oxidant in a Completely Dry Oxidative Chemical Vapor Deposition Process. Chem. Mater. 22, 2864–2868 (2010).
45. Kaviani, S., Mohammadi Ghaleni, M., Tavakoli, E. & Nejati, S. Electroactive and Conformal Coatings of Oxidative Chemical Vapor Deposition Polymers for Oxygen Electroreduction. ACS Appl. Polym. Mater. 1, 552–560 (2019).
46. Atanasov, S. E. et al. Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition. Chem. Mater. 26, 3471–3478 (2014).
47. Kim, D. H., Atanasov, S. E., Lemaire, P., Lee, K. & Parsons, G. N. Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) (PEDOT) Formed via Oxidative Molecular Layer Deposition. ACS Appl. Mater. Interfaces 7, 3866–3870 (2015).
48. Knez, M., Nielsch, K. & Niinistö, L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Advanced Materials 19, 3425–3438 (2007).
49. Wang, W. et al. Conductive Polymer–Inorganic Hybrid Materials through Synergistic Mutual Doping of the Constituents. ACS Appl. Mater. Interfaces 9, 27964–27971 (2017).
50. Wang, W. Vapor Phase Infiltration (VPI) and Doping of Conducting Polymers. (2017).
51. Wang, W. et al. Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Advanced Materials Interfaces 4, 1600806 (2017).
52. Wang, W. et al. Efficient and controllable vapor to solid doping of the polythiophene P3HT by low temperature vapor phase infiltration. J. Mater. Chem. C 5, 2686–2694 (2017).
53. Huang, J. & Kaner, R. B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. Engl. 43, 5817–5821 (2004).
54. Lee, S.-H., Lee, D.-H., Lee, K. & Lee, C.-W. High-Performance Polyaniline Prepared via Polymerization in a Self-Stabilized Dispersion. Advanced Functional Materials 15, 1495–1500 (2005).
55. Das, D., Datta, A. & Contractor, A. Q. Doping of polyaniline with 6-cyano-2-naphthol. J Phys Chem B 118, 12993–13001 (2014).
56. Stejskal, J., Sapurina, I., Trchová, M. & Prokeš, J. Protonation of Polyaniline with 3-Nitro-1,2,4-triazol-5-one. Chem. Mater. 14, 3602–3606 (2002).
57. Ryu, K. S., Moon, B. W., Joo, J. & Chang, S. H. Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution. polymer 42, 9355–9360 (2001).
58. Chen, S.-A. & Lin, L.-C. Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties. Macromolecules 28, 1239–1245 (1995).
59. Chaudhuri, D., Kumar, A., Rudra, I. & Sarma, D. D. Synthesis and Spectroscopic Characterization of Highly Conducting BF3-Doped Polyaniline. Advanced Materials 13, 1548–1551 (2001).
60. Kulszewicz-Bajer, I. et al. Lewis Acid Doped Polyaniline:  Preparation and Spectroscopic Characterization. Chem. Mater. 11, 552–556 (1999).
61. Dimitriev, O. P. Doping of Polyaniline by Transition-Metal Salts. Macromolecules 37, 3388–3395 (2004).
62. Izumi, C. M. S., Ferreira, A. M. D. C., Constantino, V. R. L. & Temperini, M. L. A. Studies on the Interaction of Emeraldine Base Polyaniline with Cu(II), Fe(III), and Zn(II) Ions in Solutions and Films. Macromolecules 40, 3204–3212 (2007).
63. Gregorczyk, K. & Knez, M. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials. Progress in Materials Science 75, 1–37 (2016).
64. Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances 4, eaat5780 (2018).
65. Zhao, Q., Jamal, R., Zhang, L., Wang, M. & Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9, 557 (2014).
66. Aasmundtveit, K. E. et al. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Metals 101, 561–564 (1999).
67. Mitraka, E. et al. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A 5, 4404–4412 (2017).
68. Terzi, F. et al. New Insights on the Interaction between Thiophene Derivatives and Au Surfaces. The Case of 3,4-Ethylenedioxythiophene and the Relevant Polymer. J. Phys. Chem. C 115, 17836–17844 (2011).
69. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R.Jr. Rumble. Standard Reference Database 20, Version 3.4 (web version). (2003).
70. Brokken-Zijp, J. C. M., van Asselen, O. L. J., Kleinjan, W. E., van de Belt, R. & de With, G. Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles. Journal of Nanotechnology (2011). doi:10.1155/2011/106254
71. Nie, T., Zhang, K., Xu, J., Lu, L. & Bai, L. A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. Journal of Electroanalytical Chemistry 717–718, 1–9 (2014).
72. Kim, J., Kim, E., Won, Y., Lee, H. & Suh, K. The preparation and characteristics of conductive poly(3,4-ethylenedioxythiophene) thin film by vapor-phase polymerization. Synthetic Metals 139, 485–489 (2003).
73. Hohnholz, D., MacDiarmid, A. G., Sarno, D. M. & Wayne E. Jones, J. Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition. Chem. Commun. 2444–2445 (2001). doi:10.1039/B107130K
74. Ahonen, H. J., Lukkari, J. & Kankare, J. n- and p-Doped Poly(3,4-ethylenedioxythiophene):  Two Electronically Conducting States of the Polymer. Macromolecules 33, 6787–6793 (2000).
75. Cho, M. S., Kim, S. Y., Nam, J. D. & Lee, Y. Preparation of PEDOT/Cu composite film by in situ redox reaction between EDOT and copper(II) chloride. Synthetic Metals 158, 865–869 (2008).
76. Ng, C. A. & Camacho, D. H. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell. IOP Conf. Ser.: Mater. Sci. Eng. 79, 012020 (2015).
77. Department of Physics, Institute of Science, Civil Lines, Nagpur – 440 001, India, Kelkar, D., Chourasia, A. & Electronic Science Department, H.P.T.Arts &R.Y.K.Science College, Nasik, India. Structural, Thermal and Electrical Properties of Doped Poly(3,4 ethylenedioxythiophene). ChChT 10, 395–400 (2016).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73682-
dc.description.abstract本研究首次以五氯化銻作為氧化劑,藉由分子層沉積技術進行3,4-乙烯基二氧噻吩之氣相聚合以生長聚(3,4-乙烯基二氧噻吩)薄膜,並探討其製程及後處理對薄膜特性之影響。五氯化銻因具有高揮發性,相較其他低揮發性氧化劑更適合應用在低溫沉積技術中。研究結果顯示,在150℃和90℃溫度下分子層沉積之聚(3,4-乙烯基二氧噻吩)膜可分別獲得424和243S / cm的高導電率。我們探討沉積溫度和五氯化銻劑量對薄膜性質的影響,發現:(1)相比於90℃,在150℃沉積時五氯化銻的物理吸附量較低,使其對聚(3,4-乙烯基二氧噻吩)過氧化影響較小,同時單體的遷移率上升,因此薄膜的結晶度更高,並擁有更佳的導電率; (2)對於在150℃下大於 20毫托和在90℃下大於13毫托的五氯化銻劑量下,由於過量的五氯化銻物理吸附導致高分子鏈過度氧化並干擾其結晶,致使導電率降低。另外數種後處理,包含去離子水清洗、熱處理及以多種氣體進行氣相浸潤皆會使高分子的摻雜程度下降,並降低導電率。其可能原因為後處理過程中五氯化銻作為摻雜物被去除所致。zh_TW
dc.description.abstractThis work investigated the processing, post-processing, and properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films fabricated by molecular layer deposition (MLD) through vapor phase polymerization of ethylene dioxythiophene (EDOT) with SbCl5 as an oxidant for the first time, taking advantages of the high volatility of SbCl5 to realize low-temperature deposition. High conductivity of 424 and 243 S/cm was obtained from the MLD PEDOT film deposited at 150 and 90 °C, respectively. Effects of the deposition temperature and SbCl5 dose were as follows: (1) Compared with 90 °C, 150 °C reduced physisorbed SbCl5 while increasing the mobility of the depositing monomers, resulting in higher crystallinity and less over-oxidation by SbCl5 in the PEDOT film, which consequently showed higher conductivity; (2) For SbCl5 doses > 20 mTorr at 150 °C and >13 mTorr at 90 °C, the PEDOT film exhibited reduced conductivity due to excessive physisorbed SbCl5 causing over-oxidation and interfering with the crystallization of PEDOT. Post-processing treatments—including thermal annealing under vacuum, rinse with water, and vapor phase infiltration (VPI) with several precursors—to the PEDOT films decreased the conductivity, likely due to their removal of the residual SbCl5 serving as dopants.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:07:59Z (GMT). No. of bitstreams: 1
ntu-108-R06527020-1.pdf: 4985865 bytes, checksum: 2aea17aa7e4035048cf459ef639b7438 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Overview of conductive polymer 1
1.2 Introduction and advantages of PEDOT 4
1.3 Development of PEDOT polymerization process 6
1.3.1 Solution process 7
1.3.2 Vapor phase process 10
1.4 Vapor-based layer by layer deposition of polymer films 16
1.4.1 Introduction of atomic layer deposition (ALD) 16
1.4.2 Molecular layer deposition (MLD) of polymer films 19
1.4.3 Vapor phase infiltration (VPI) for post treatment of polymerization 22
1.5 Current progresses 24
1.5.1 PEDOT synthesized with MLD process 24
1.5.2 Doping of Conductive polymer by VPI post treatment 25
1.6 Motivation and objectives statements 27
Chapter 2 Experimental method 29
2.1 Equipment and experiment details 29
2.1.1 MLD deposition system 29
2.1.2 Fabrication of MLD PEDOT thin film 29
2.1.3 DI water and acid rinse for post treatment 31
2.1.4 VPI process 31
2.2 Thin film characteristic analysis 32
2.2.1 Measurements of electrical conductivity 32
2.2.2 Measurement of thickness (Alpha-step) 33
2.2.3 Fourier transform infrared spectroscopy (FTIR) 33
2.2.4 Raman spectroscopy 33
2.2.5 Grazing incidence X-ray diffraction (GIXRD) 34
2.2.6 X-ray photoelectron spectroscopy (XPS) 34
2.2.7 UV-Visible spectrum 35
Chapter 3 Results and discussion 36
3.1 Growth Characteristic of MLD PEDOT 36
3.2 Effect of growth condition on the conductivity of PEDOT 39
3.2.1 Dose of SbCl5 vapor 39
3.2.2 Deposition temperature 40
3.2.3 Thickness dependence of the conductivity of PEDOT films 42
3.3 Other properties analysis 43
3.3.1 Chemical structure analysis 43
3.3.2 Crystalline structure 48
3.3.3 Elemental analysis 53
3.3.4 Optical property 56
3.4 Influence of post treatment on the properties of MLD PEDOT films 59
3.4.1 Effect of DI water rinse 59
3.4.2 Effect of VPI process 63
Chapter 4 Conclusion 67
References 69
Appendix 81
dc.language.isoen
dc.subject五氯化銻zh_TW
dc.subject氣相聚合zh_TW
dc.subject分子層沉積技術zh_TW
dc.subject原子層沉積技術zh_TW
dc.subject4-乙烯基二氧?吩zh_TW
dc.subject導電高分子zh_TW
dc.subjectantimony pentachloride (SbCl5)en
dc.subjectpoly(3en
dc.subject4-ethylenedioxythiophene) (PEDOT)en
dc.subjectatomic layer deposition (ALD)en
dc.subjectmolecular layer deposition (MLD)en
dc.subjectvapor phase polymerizationen
dc.subjectconductive polymersen
dc.title"以五氯化銻為氧化劑進行聚(3,4-乙烯基二氧噻吩)分子層沉積研究"zh_TW
dc.titleMolecular layer deposition of poly(3,4-ethylenedioxythiophene) with SbCl5 as an oxidanten
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林唯芳(Wei-Fang Su),童世煌(Shih-Huang Tung)
dc.subject.keyword導電高分子,3,4-乙烯基二氧?吩,原子層沉積技術,分子層沉積技術,氣相聚合,五氯化銻,zh_TW
dc.subject.keywordconductive polymers,poly(3,4-ethylenedioxythiophene) (PEDOT),atomic layer deposition (ALD),molecular layer deposition (MLD),vapor phase polymerization,antimony pentachloride (SbCl5),en
dc.relation.page86
dc.identifier.doi10.6342/NTU201903941
dc.rights.note有償授權
dc.date.accepted2019-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved