請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73435
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
dc.contributor.author | Dung-Yue Su | en |
dc.contributor.author | 蘇東裕 | zh_TW |
dc.date.accessioned | 2021-06-17T07:34:43Z | - |
dc.date.available | 2029-05-10 | |
dc.date.copyright | 2019-06-12 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-05-10 | |
dc.identifier.citation | 1. Lin, Y.-Y., Hsu, C.-C., Tseng, M.-H., Shyue, J.-J. & Tsai, F.-Y. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 7, 22610–22617 (2015).
2. Lin, Y.-Y., Chang, Y.-N., Tseng, M.-H., Wang, C.-C. & Tsai, F.-Y. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition. Nanotechnology 26, 024005 (2015). 3. Chang, C.-Y. & Tsai, F.-Y. Efficient and air-stable plastics-based polymer solar cells enabled by atomic layer deposition. J. Mater. Chem. 21, 5710–5715 (2011). 4. Nathan, A. et al. Flexible Electronics: The Next Ubiquitous Platform. Proc. IEEE 100, 1486–1517 (2012). 5. Yu, D., Yang, Y.-Q., Chen, Z., Tao, Y. & Liu, Y.-F. Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43–49 (2016). 6. Tseng, M.-H. et al. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes. Nanotechnology 27, 295706 (2016). 7. Chang, C.-Y., Chou, C.-T., Lee, Y.-J., Chen, M.-J. & Tsai, F.-Y. Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition. Org. Electron. 10, 1300–1306 (2009). 8. Yoo, B. M., Shin, H. J., Yoon, H. W. & Park, H. B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131, n/a-n/a (2014). 9. Kim, H., Horwitz, J. S., Kushto, G. P., Kafafi, Z. H. & Chrisey, D. B. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl. Phys. Lett. 79, 284–286 (2001). 10. Kulkarni, A. K., Lim, T., Khan, M. & Schulz, K. H. Electrical, optical, and structural properties of indium-tin-oxide thin films deposited on polyethylene terephthalate substrates by rf sputtering. J. Vac. Sci. Technol. A 16, 1636–1640 (1998). 11. Minami, T., Sonohara, H., Kakumu, T. & Takata, S. Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering. Thin Solid Films 270, 37–42 (1995). 12. Liang, J. et al. Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS Nano 8, 1590–1600 (2014). 13. Yu, L., Shearer, C. & Shapter, J. Recent Development of Carbon Nanotube Transparent Conductive Films. Chem. Rev. 116, 13413–13453 (2016). 14. Mirri, F. et al. High-Performance Carbon Nanotube Transparent Conductive Films by Scalable Dip Coating. ACS Nano 6, 9737–9744 (2012). 15. Kang, C. H. et al. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. Appl. Phys. Lett. 109, 081902 (2016). 16. He, L. & Chin Tjong, S. Aqueous graphene oxide-dispersed carbon nanotubes as inks for the scalable production of all-carbon transparent conductive films. J. Mater. Chem. C 4, 7043–7051 (2016). 17. Chamoli, P., Sharma, R., K. Das, M. & K. Kar, K. Mangifera indica , Ficus religiosa and Polyalthia longifolia leaf extract-assisted green synthesis of graphene for transparent highly conductive film. RSC Adv. 6, 96355–96366 (2016). 18. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). 19. Kim, R.-H. et al. Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Lett. 11, 3881–3886 (2011). 20. Wang, X., Zhi, L. & Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 8, 323–327 (2008). 21. Chou, C.-T. et al. Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition. Adv. Mater. 25, 1750–1754 (2013). 22. Nayak, P. K., Wang, Z. & Alshareef, H. N. Indium-Free Fully Transparent Electronics Deposited Entirely by Atomic Layer Deposition. Adv. Mater. 28, 7736–7744 (2016). 23. Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Adv. Funct. Mater. 22, 421–428 (2012). 24. Hecht, D. S., Hu, L. & Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 23, 1482–1513 (2011). 25. Zeng, X.-Y., Zhang, Q.-K., Yu, R.-M. & Lu, C.-Z. A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer. Adv. Mater. 22, 4484–4488 (2010). 26. Cui, F. et al. Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors. Nano Lett. 15, 7610–7615 (2015). 27. Liang, J. et al. Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS Nano 8, 1590–1600 (2014). 28. Hecht, D. S., Hu, L. & Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 23, 1482–1513 (2011). 29. Langley, D. et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24, 452001 (2013). 30. Emmott, C. J. M., Urbina, A. & Nelson, J. Environmental and economic assessment of ITO-free electrodes for organic solar cells. Sol. Energy Mater. Sol. Cells 97, 14–21 (2012). 31. Zhu, R. et al. Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano 5, 9877–9882 (2011). 32. Zilberberg, K. et al. Highly Robust Indium-Free Transparent Conductive Electrodes Based on Composites of Silver Nanowires and Conductive Metal Oxides. Adv. Funct. Mater. 24, 1671–1678 (2014). 33. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955–2963 (2010). 34. Jiu, J. et al. The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv. 5, 27657–27664 (2015). 35. Ahn, Y., Jeong, Y. & Lee, Y. Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 4, 6410–6414 (2012). 36. Khaligh, H. H. & Goldthorpe, I. A. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8, 235 (2013). 37. Mittelman, A. M., Fortner, J. D. & Pennell, K. D. Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environ. Sci. Nano 2, 683–691 (2015). 38. Wang, J. et al. The effect of ultraviolet radiation on silver nanowire transparent electrode based on flexible polymeric film substrate. in 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) 526–529 (2015). doi:10.1109/NANO.2015.7388656 39. Das, S. R. et al. Single-Layer Graphene as a Barrier Layer for Intense UV Laser-Induced Damages for Silver Nanowire Network. ACS Nano 9, 11121–11133 (2015). 40. 曾銘宏. 以原子層法製備之奈米複合薄膜於應用於可撓可拉伸阻氣,介電層,與導電層之研究. (2016). 41. George, S. M. Atomic Layer Deposition: An Overview. Chem. Rev. 110, 111–131 (2010). 42. Park, J.-S., Chae, H., Chung, H. K. & Lee, S. I. Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011). 43. Hoogeland, D. et al. Plasma-assisted atomic layer deposition of TiN/Al2O3 stacks for metal-oxide-semiconductor capacitor applications. J. Appl. Phys. 106, 114107 (2009). 44. Pan, T. M., Hsieh, C. I., Huang, T. Y., Yang, J. R. & Kuo, P. S. Good High-Temperature Stability of TiN/ Al2O3/WN/TiN Capacitors. IEEE Electron Device Lett. 28, 954–956 (2007). 45. Zhang, G. et al. Transparent Nanotubular Capacitors Based On Transplanted Anodic Aluminum Oxide Templates. ACS Appl. Mater. Interfaces 7, 5522–5527 (2015). 46. Han, H.-C. et al. High K Nanophase Zinc Oxide on Biomimetic Silicon Nanotip Array as Supercapacitors. Nano Lett. 13, 1422–1428 (2013). 47. Su, Y. et al. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5, (2014). 48. Pérez, E. M. & Martín, N. π–π interactions in carbon nanostructures. Chem. Soc. Rev. 44, 6425–6433 (2015). 49. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science 335, 442–444 (2012). 50. Wu, H. & Drzal, L. T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50, 1135–1145 (2012). 51. Potts, J. R., Dreyer, D. R., Bielawski, C. W. & Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011). 52. Scherillo, G. et al. Tailoring Assembly of Reduced Graphene Oxide Nanosheets to Control Gas Barrier Properties of Natural Rubber Nanocomposites. ACS Appl. Mater. Interfaces 6, 2230–2234 (2014). 53. Choi, K. et al. Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano (2015). doi:10.1021/acsnano.5b01161 54. Guo, H. C., Ye, E., Li, Z., Han, M.-Y. & Loh, X. J. Recent progress of atomic layer deposition on polymeric materials. Mater. Sci. Eng. C 70, Part 2, 1182–1191 (2017). 55. Layek, R. K., Das, A. K., Park, M. U., Kim, N. H. & Lee, J. H. Layer-structured graphene oxide/polyvinyl alcohol nanocomposites: dramatic enhancement of hydrogen gas barrier properties. J. Mater. Chem. A 2, 12158–12161 (2014). 56. Cui, Y., Kundalwal, S. I. & Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016). 57. Cui, Y., Kundalwal, S. I. & Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016). 58. Han, X. et al. Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24, 205304 (2013). 59. Zhang, X. et al. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem. Commun. 46, 7539–7541 (2010). 60. Han, X. et al. Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24, 205304 (2013). 61. Tang, Z., Liu, X., Hu, Y., Zhang, X. & Guo, B. A slurry compounding route to disperse graphene oxide in rubber. Mater. Lett. 191, 93–96 (2017). 62. Lee, S., Hong, J.-Y. & Jang, J. Multifunctional Graphene Sheets Embedded in Silicone Encapsulant for Superior Performance of Light-Emitting Diodes. ACS Nano 7, 5784–5790 (2013). 63. Lee, H. et al. Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer. Nanoscale 6, 8565–8570 (2014). 64. Wang, D., Zhou, W., Liu, H., Ma, Y. & Zhang, H. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode. Nanotechnology 27, 335203 (2016). 65. Cho, S. et al. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens. ACS Nano 11, 4346–4357 (2017). 66. Ya-Hsing Chang, Y.-C. L. Diameter Control of Silver Nanowires by Chloride Ions and Its Application as Transparent Conductive Coating. Chem. Lett. 40, 1352–1353 (2011). 67. Lee, J. H., Lee, P., Lee, D., Lee, S. S. & Ko, S. H. Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth. Cryst. Growth Des. 12, 5598–5605 (2012). 68. Li, X., Wang, L. & Yan, G. Review: Recent research progress on preparation of silver nanowires by soft solution method and their applications. Cryst. Res. Technol. 46, 427–438 (2011). 69. Li, B., Ye, S., Stewart, I. E., Alvarez, S. & Wiley, B. J. Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%. Nano Lett. 15, 6722–6726 (2015). 70. Korte, K. E., Skrabalak, S. E. & Xia, Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J. Mater. Chem. 18, 437–441 (2008). 71. Sun, Y. & Xia, Y. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process. Adv. Mater. 14, 833–837 (2002). 72. Chen, C. et al. Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 17, 3933 (2006). 73. Tsai, S. C. et al. Ultrasonic spray pyrolysis for nanoparticles synthesis. J. Mater. Sci. 39, 3647–3657 (2004). 74. Steirer, K. X. et al. Ultrasonic spray deposition for production of organic solar cells. Sol. Energy Mater. Sol. Cells 93, 447–453 (2009). 75. Fu, J., Daanen, N. N., Rugen, E. E., Chen, D. P. & Skrabalak, S. E. Simple Reactor for Ultrasonic Spray Synthesis of Nanostructured Materials. Chem. Mater. 29, 62–68 (2017). 76. Coskun, S., Aksoy, B. & Unalan, H. E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Cryst. Growth Des. 11, 4963–4969 (2011). 77. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955–2963 (2010). 78. Li, X., Wang, L. & Yan, G. Review: Recent research progress on preparation of silver nanowires by soft solution method and their applications. Cryst. Res. Technol. 46, 427–438 (2011). 79. Pingali, K. C., Rockstraw, D. A. & Deng, S. Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate. Aerosol Sci. Technol. 39, 1010–1014 (2005). 80. Stopic, S., Dvorak, P. & Friedrich, B. Synthesis of spherical nanosized silver powder by ultrasonic spray pyrolysis. Metall 60, 377–382 (2006). 81. Lin, Y.-Y., Chang, Y.-N., Tseng, M.-H., Wang, C.-C. & Tsai, F.-Y. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition. Nanotechnology 26, 024005 (2015). 82. Lin, Y.-Y., Hsu, C.-C., Tseng, M.-H., Shyue, J.-J. & Tsai, F.-Y. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 7, 22610–22617 (2015). 83. Lee, D. et al. Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5, 7750–7755 (2013). 84. Langley, D. et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24, 452001 (2013). 85. Kim, N. et al. A correlation study between barrier film performance and shelf lifetime of encapsulated organic solar cells. Sol. Energy Mater. Sol. Cells 101, 140–146 (2012). 86. Seok Woo, J. et al. Carbon nanotube-induced migration of silver nanowire networks into plastic substrates via Joule heating for high stability. RSC Adv. 6, 86395–86400 (2016). 87. Wu, C. et al. Rapid self-assembly of ultrathin graphene oxide film and application to silver nanowire flexible transparent electrodes. RSC Adv. 6, 15838–15845 (2016). 88. Scheideler, W. J. et al. A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors. J. Mater. Chem. C 4, 3248–3255 (2016). 89. Chen, S. et al. Neutral-pH PEDOT:PSS as over-coating layer for stable silver nanowire flexible transparent conductive films. Org. Electron. 15, 3654–3659 (2014). 90. Wang, J. et al. Highly Reliable Silver Nanowire Transparent Electrode Employing Selectively Patterned Barrier Shaped by Self-Masked Photolithography. ACS Appl. Mater. Interfaces (2015). doi:10.1021/acsami.5b07619 91. Lee, H. J. et al. Effective Indium-Doped Zinc Oxide Buffer Layer on Silver Nanowires for Electrically Highly Stable, Flexible, Transparent, and Conductive Composite Electrodes. ACS Appl. Mater. Interfaces 5, 10397–10403 (2013). 92. You, S., Park, Y. S., Choi, H. W. & Kim, K. H. Properties of Silver Nanowire/Zinc Oxide Transparent Bilayer Thin Films for Optoelectronic Applications. J. Nanosci. Nanotechnol. 15, 8656–8661 (2015). 93. Liu, Y., Chang, Q. & Huang, L. Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. J. Mater. Chem. C 1, 2970–2974 (2013). 94. Yeh, M.-H., Chen, P.-H., Yang, Y.-C., Chen, G.-H. & Chen, H.-S. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 9, 10788–10797 (2017). 95. Ali, K., Duraisamy, N., Kim, C. Y. & Choi, K.-H. Al2O3 Coatings Fabrication on Silver Nanowires through Low Temperature Atomic Layer Deposition. Mater. Manuf. Process. 29, 1056–1061 (2014). 96. Hwang, B. et al. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities. Sci. Rep. 7, 41336 (2017). 97. Chen, D. et al. Thermally Stable Silver Nanowire–Polyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires. Adv. Funct. Mater. 25, 7512–7520 (2015). 98. Yan, X., Ma, J., Xu, H., Wang, C. & Liu, Y. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. J. Phys. Appl. Phys. 49, 325103 (2016). 99. Saleem, M. R., Honkanen, S. & Turunen, J. Thermal properties of TiO 2 films fabricated by atomic layer deposition. IOP Conf. Ser. Mater. Sci. Eng. 60, 012008 (2014). 100. Kääriäinen, M.-L. Atomic layer deposited titanium and zinc oxides; structure and doping effects on their photoactivity, photocatalytic activity and bioactivity. (Lappeenranta University of Technology, 2013). 101. Kasikov, A. et al. Refractive index gradients in TiO 2 thin films grown by atomic layer deposition. J. Phys. Appl. Phys. 39, 54 (2006). 102. Tynell, T. & Karppinen, M. Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014). 103. Behrendt, A. et al. Highly Robust Transparent and Conductive Gas Diffusion Barriers Based on Tin Oxide. Adv. Mater. 27, 5961–5967 (2015). 104. Elam, J. W. & George, S. M. Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques. Chem. Mater. 15, 1020–1028 (2003). 105. Saarenpää, H., Niemi, T., Tukiainen, A., Lemmetyinen, H. & Tkachenko, N. Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 94, 1379–1383 (2010). 106. Khaligh, H. H. & Goldthorpe, I. A. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8, 235 (2013). 107. Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 8, 689–692 (2008). 108. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955–2963 (2010). 109. Zhu, R. et al. Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano 5, 9877–9882 (2011). 110. Färm, E., Kemell, M., Santala, E., Ritala, M. & Leskelä, M. Selective-Area Atomic Layer Deposition Using Poly(vinyl pyrrolidone) as a Passivation Layer. J. Electrochem. Soc. 157, K10–K14 (2010). 111. Ellinger, C. R. & Nelson, S. F. Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone). Chem. Mater. 26, 1514–1522 (2014). 112. Haider, A., Yilmaz, M., Deminskyi, P., Eren, H. & Biyikli, N. Nanoscale selective area atomic layer deposition of TiO2 using e-beam patterned polymers. RSC Adv. 6, 106109–106119 (2016). 113. Durner, J. et al. Effect of hydrogen peroxide on the three-dimensional polymer network in composites. Dent. Mater. 27, 573–580 (2011). 114. Stahlmecke, B. et al. Electromigration in self-organized single-crystalline silver nanowires. Appl. Phys. Lett. 88, 053122 (2006). 115. Grillet, N. et al. Photo-Oxidation of Individual Silver Nanoparticles: A Real-Time Tracking of Optical and Morphological Changes. J. Phys. Chem. C 117, 2274–2282 (2013). 116. Ahn, Y., Jeong, Y. & Lee, Y. Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 4, 6410–6414 (2012). 117. Jiu, J. et al. The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv. 5, 27657–27664 (2015). 118. Henry, B. M. et al. Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates. Thin Solid Films 382, 194–201 (2001). 119. Yun, J., Park, Y. H., Bae, T.-S., Lee, S. & Lee, G.-H. Fabrication of a Completely Transparent and Highly Flexible ITO Nanoparticle Electrode at Room Temperature. ACS Appl. Mater. Interfaces 5, 164–172 (2013). 120. Zardetto, V. et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy Fuels 1, 30–55 (2017). 121. Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015). 122. Liu, T. et al. All solution processed perovskite solar cells with Ag@Au nanowires as top electrode. Sol. Energy Mater. Sol. Cells 171, 43–49 (2017). 123. Li, L.-J. et al. Three-dimensional AlZnO/Al 2 O 3 /AlZnO nanocapacitor arrays on Si substrate for energy storage. Nanoscale Res. Lett. 7, 544 (2012). 124. Zhang, G. et al. Transparent Nanotubular Capacitors Based On Transplanted Anodic Aluminum Oxide Templates. ACS Appl. Mater. Interfaces 7, 5522–5527 (2015). 125. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S. B. & Rubloff, G. W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009). 126. Haspert, L. C., Lee, S. B. & Rubloff, G. W. Nanoengineering Strategies for Metal–Insulator–Metal Electrostatic Nanocapacitors. ACS Nano 6, 3528–3536 (2012). 127. Pint, C. L. et al. Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49, 4890–4897 (2011). 128. Chang, S., Oh, J., Boles, S. T. & Thompson, C. V. Fabrication of silicon nanopillar-based nanocapacitor arrays. Appl. Phys. Lett. 96, 153108 (2010). 129. Lee, W. & Park, S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 114, 7487–7556 (2014). 130. Hong, Y. K., Kim, B. H., Kim, D. I., Park, D. H. & Joo, J. High-yield and environment-minded fabrication of nanoporous anodic aluminum oxide templates. RSC Adv. 5, 26872–26877 (2015). 131. Pint, C. L. et al. Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49, 4890–4897 (2011). 132. Jang, J. E. et al. Nanoscale capacitors based on metal-insulator-carbon nanotube-metal structures. Appl. Phys. Lett. 87, 263103 (2005). 133. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955–2963 (2010). 134. Yang, C. et al. Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics. Adv. Mater. 23, 3052–3056 (2011). 135. Khaligh, H. H. & Goldthorpe, I. A. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8, 235 (2013). 136. Chou, N., Kim, Y. & Kim, S. A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications. ACS Appl. Mater. Interfaces 8, 6269–6276 (2016). 137. Liu, G.-S. et al. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 8, 5507–5515 (2016). 138. Coskun, S., Aksoy, B. & Unalan, H. E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Cryst. Growth Des. 11, 4963–4969 (2011). 139. Philip, A. Preparation and characterization of High k Aluminum Oxide Thin Films by Atomic Layer Deposition for Gate Dielectric applications. INFLIBNET (2011). 140. Wei, L. et al. Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage. Nanoscale Res. Lett. 11, 213 (2016). 141. Han, H.-C. et al. High K Nanophase Zinc Oxide on Biomimetic Silicon Nanotip Array as Supercapacitors. Nano Lett. 13, 1422–1428 (2013). 142. Inagaki, N., Tasaka, S. & Hiramatsu, H. Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of tetramethoxysilane and oxygen. J. Appl. Polym. Sci. 71, 2091–2100 (1999). 143. Corral, E. L. & Loehman, R. E. Ultra-High-Temperature Ceramic Coatings for Oxidation Protection of Carbon–Carbon Composites. J. Am. Ceram. Soc. 91, 1495–1502 (2008). 144. Priolo, M. A., Holder, K. M., Guin, T. & Grunlan, J. C. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets. Macromol. Rapid Commun. 36, 866–879 (2015). 145. Hu, Y. S. et al. Improving gas barrier of PET by blending with aromatic polyamides. Polymer 46, 2685–2698 (2005). 146. Polywka, A. et al. Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS). Nanomaterials 6, (2016). 147. Baëtens, T., Pallecchi, E., Thomy, V. & Arscott, S. Cracking effects in squashable and stretchable thin metal films on PDMS for flexible microsystems and electronics. Sci. Rep. 8, 9492 (2018). 148. Won, S. et al. Graphene-based stretchable and transparent moisture barrier. Nanotechnology 29, 125705 (2018). 149. Bui, N. et al. Ultrabreathable and Protective Membranes with Sub-5 nm Carbon Nanotube Pores. Adv. Mater. 28, 5871–5877 (2016). 150. Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 25, 5997–6038 (2013). 151. Chou, H.-H. et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015). 152. Kamper, S. L. & Fennema, O. Water Vapor Permeability of an Edible, Fatty Acid, Bilayer Film. J. Food Sci. 49, 1482–1485 (1984). 153. Lu, Y. et al. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning. ACS Appl. Mater. Interfaces 10, 2093–2104 (2018). 154. Liang, Y. et al. A new strategy to improve the gas barrier property of isobutylene–isoprene rubber/clay nanocomposites. Polym. Test. 27, 270–276 (2008). 155. Holder, K. M. et al. Stretchable Gas Barrier Achieved with Partially Hydrogen-Bonded Multilayer Nanocoating. Macromol. Rapid Commun. 35, 960–964 (2014). 156. Qin, S., Song, Y., Floto, M. E. & Grunlan, J. C. Combined High Stretchability and Gas Barrier in Hydrogen-Bonded Multilayer Nanobrick Wall Thin Films. ACS Appl. Mater. Interfaces 9, 7903–7907 (2017). 157. Hatch, C. D. et al. Water Adsorption on Clay Minerals As a Function of Relative Humidity: Application of BET and Freundlich Adsorption Models. Langmuir 28, 1790–1803 (2012). 158. Rahman, M. M., Kim, H.-D. & Lee, W.-K. Preparation and characterization of waterborne polyurethane/clay nanocomposite: Effect on water vapor permeability. J. Appl. Polym. Sci. 110, 3697–3705 (2008). 159. Muñoz, E. & García-Manrique, J. A. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites. International Journal of Polymer Science (2015). doi:10.1155/2015/390275 160. Gabr, M. H. et al. Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites. Cellulose 20, 819–826 (2013). 161. Dafalla, M. A. Effects of Clay and Moisture Content on Direct Shear Tests for Clay-Sand Mixtures. Advances in Materials Science and Engineering (2013). doi:10.1155/2013/562726 162. Yan, N. et al. Gas-Barrier Hybrid Coatings by the Assembly of Novel Poly(vinyl alcohol) and Reduced Graphene Oxide Layers through Cross-Linking with Zirconium Adducts. ACS Appl. Mater. Interfaces 7, 22678–22685 (2015). 163. Su, Y. et al. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5, 4843 (2014). 164. Kim, H., Abdala, A. A. & Macosko, C. W. Graphene/Polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010). 165. Ramanathan, T. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008). 166. Potts, J. R., Dreyer, D. R., Bielawski, C. W. & Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011). 167. Pu, N.-W. et al. Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J. Taiwan Inst. Chem. Eng. 43, 140–146 (2012). 168. Meschi Amoli, B. et al. SDS-stabilized graphene nanosheets for highly electrically conductive adhesives. Carbon 91, 188–199 (2015). 169. Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 110, 132–145 (2010). 170. Johns, J. E. & Hersam, M. C. Atomic Covalent Functionalization of Graphene. Acc. Chem. Res. 46, 77–86 (2013). 171. Kim, T. et al. Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices. Energy Environ. Sci. 7, 3403–3411 (2014). 172. Eigler, S. & Hirsch, A. Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angew. Chem. Int. Ed. 53, 7720–7738 (2014). 173. Charmeau, J. Y., Kientz, E. & Holl, Y. Adhesion of latex films; influence of surfactants. Prog. Org. Coat. 27, 87–93 (1996). 174. Martín-Fabiani, I. et al. Enhanced Water Barrier Properties of Surfactant-Free Polymer Films Obtained by MacroRAFT-Mediated Emulsion Polymerization. ACS Appl. Mater. Interfaces (2018). doi:10.1021/acsami.8b01040 175. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008). 176. Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D. & Coleman, J. N. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir 26, 3208–3213 (2010). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73435 | - |
dc.description.abstract | 本研究致力於以奈米銀線開發可撓曲式電極、以石墨烯開發阻氣膜,以解決現有技術之問題。於可撓曲式電極的研究中,我們成功開發一新穎奈米銀線合成技術、以及結合銀線與ALD薄膜沉積技術製備透明導電阻氣薄膜與超級電容,以解決主流電極材料ITO薄膜不耐撓曲、不符合可撓式元件需求及儲能技術之重要課題:低成本、高電容值。
奈米銀線合成技術中,我們使用溴化銅做為反映控制劑,於大氣下以溶液態製程合成奈米銀線,並搭配最佳化溴化銅濃度及工業上可用之噴塗製程添加前驅物,以達到製備高長寬比奈米銀線之目的。 針對透明導電阻氣薄膜的部分,我們使用本實驗室所開發之氧化鉿摻雜氧化鋅導電薄膜,並將此薄膜與奈米銀線薄膜結合,藉由雙氧水處理進行銀線界面性質調控,我們成功的開發出高導電性、阻氣性、高穩定性、高可撓曲性之透明導電薄膜,其性能超越ITO/PET薄膜,並可同時作為鈣鈦礦太陽能電池之電極與電子傳輸層,達到略優於使用ITO薄膜製備之電池效率。 在超級電容的開發中,我們使用可溶液態製備之高表面積奈米銀線電極,搭配最佳化ALD前驅物暴露製程,於多孔之奈米銀線電極表面沉積高品質之ALD介電層與導電層,進一步提升電容值,成功開發出具有高體積電容值之超級電容器(193.5 mF/cm3)。 於可拉伸式阻氣膜的研究中,我們成利用溶劑交換法大幅提升石墨烯於聚胺脂彈性體中之分散性,進而延長氣體滲透所需行走之路徑,成功製備高可拉伸性、高阻氣性、良好機械強度及熱穩定性之複合薄膜。 | zh_TW |
dc.description.abstract | The dissertation focus on development of flexible electrode and stretchable gas barrier. For the field of flexible electrodes, synthesis of silver nanowires (AgNWs) and integration of AgNWs with atomic layer deposition (ALD) in flexible electrodes and supercapacitors were studied to address the key issues of flexible electronics: (i) nature brittle and insufficient performance of indium tin oxide (ITO), which is current dominant material of transparent conductive electrode, and (ii) major goal of energy storage: high capacitance and cost-effective fabrication.
In the part of synthesis of silver nanowires, we developed a solution processed route to synthesize silver nanowires with high aspect ratio in ambient condition through optimizing copper bromide concentration and injection of ultrasonic atomization of silver precursor. In the part of transparent conductive gas barrier, we utilized a novel ALD hafnium-doped zinc oxide (HZO) process, a good transparent conductive gas barrier process developed in our laboratory. To deposited thin HZO layer with plastic-compatible temperature, excellent gas barrier performance and flexibility, integrating with silver nanowires film and H2O2 treatment of AgNWs interfaces, we successfully developed a HZO/AgNW hybrid transparent conductive gas barrier with performance superior to ITO/PET. In addition, we also demonstrated the feasibility of the HZO/AgNW hybrid film for perovskite solar cells, which can simultaneously as transparent electrode and electron collection layer, and the cells using hybrid films displayed slightly better photovoltaic performance than the devices using commercial ITO as electrode. In the part of supercapacitor, we utilized high surface-area silver nanowires network, which could be fabricated by spray coating of silver nanowires, and integrating with ALD dielectric and conductive layer to fabricate supercapacitor with high volumetric capacitance (193.5 mF/cm3). In the part of stretchable gas barrier, we utilized solvent exchange method, which could significantly improve graphene dispersibility in polyurethane. Therefore, tortuous path of gas in polyurethane was prolonged, and resulting in respectable WVTR reduction, and its comprehensive properties were improved. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:34:43Z (GMT). No. of bitstreams: 1 ntu-108-F99527053-1.pdf: 4076511 bytes, checksum: e7e85601225ea64d99ea6a23886d1c5c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Abstract...............iii
Table of Contents......v List of Figures........xi List of Tables.........xvii Chapter 1 Introduction..........................1 1.1 Hindrance of flexible electronics.......1 1.2 Overview of silver nanowires............4 1.3 Overview of atomic layer deposition.....5 1.4 Overview of supercapacitor..............8 1.5 Overview of graphene-based gas barrier..9 1.6 Objectives and Organization of the Dissertation...................................13 Chapter 2 One-Step Polyol Synthesis of High Aspect Ratio Silver Nanowires by Using Copper Bromide as Control Agent ...............................................15 2.1 Introduction...........................15 2.2 Experimental...........................19 2.3.1 Materials..............................19 2.3.2 Synthesis of Ag nanowires..............19 2.3.3 Characterization.......................20 2.3 Results and discussion.................20 2.3.1 Effect of copper bromide concentration on the nanowire synthesis.............................20 2.3.2 TEM and XRD characterization of the silver nanowires......................................23 2.3.3 Ultrasonic-spray-assisted injection of silver precursor enable more uniform diameter and higher aspect ratio silver nanowires.........................24 2.3.4 Fabrication of transparent conductive film by optimized silver nanowires.....................26 2.4 Summary................................27 Chapter 3 Highly Stable and Flexible Transparent Conductive Gas-Permeation Barrier Based on Silver Nanowire/Hf-doped Zinc Oxide hybrid film.......29 3.1 Introduction...........................29 3.2 Experimental...........................34 3.2.1 Preparation of AgNWs films.............34 3.2.2 ALD HZO as encapsulation layer for AgNWs ...............................................35 3.2.3 Characterization of the Ag NWs, HZO, and HZO/Ag NWs films......................................38 3.2.4 Stability/durability and bending tests.39 3.2.5 ALD HZO/AgNW as electrode and ETL for perovskite solar cell.....................................40 3.3 Results and Discussion.................41 3.3.1 High transmittance and low resistance film was enabled by forming ALD-HZO/AgNW hybrid film....41 3.3.2 Improvement of the stabilities of silver nanowires by ALD HZO.....................................48 3.3.3 Improvement of the oxidation stabilities of silver nanowires by ALD HZO...........................53 3.3.4 Improvement of the adhesion of silver nanowire networks with substrate by ALD HZO.............55 3.3.5 Low gas permeability and good flexibility of HZO/AgNW hybrid film...........................56 3.3.6 ALD HZO as protection layer for AgNW film from CH3NH3PbI3-induced iodization..................59 3.3.7 Fabrication of perovskite solar cell by using ALD HZO/AgNW film as transparent conductive electrode and electron transporting layer....................61 3.4 Summary................................65 Chapter 4 Flexible Solid-State Supercapacitor based on silver nanowire-based films....................68 4.1 Introduction...........................68 4.2 Experimental...........................71 4.2.1 Materials..............................71 4.2.2 Synthesis of silver nanowires..........71 4.2.3 Preparation of AgNW solution:..........73 4.2.4 Preparation of silver nanowires templates ...............................................73 4.2.5 Supercapacitors fabrication and measurement: ...............................................74 4.3 Result and Discussion..................76 4.3.1 Ultrasonic-sprayed AgNWs network as template for supercapacitor and adhesion of AgNWs were improved by ALD coating........................................76 4.3.2 The calculation of effective planar capacitance and volumetric capacitance of the silver nanowire-based supercapacitors................................78 4.3.3 Optimization capacitance of the silver nanowire-based supercapacitors..........................79 4.3.4 Summary................................85 Chapter 5 High Performance Stretchable Gas-permeation Barrier Achieved with Solvent Exchange Method..86 5.1. Introduction...........................86 5.2. Experimental...........................90 5.2.1 Materials..............................90 5.2.2 Solvent exchange process...............91 5.2.3 Preparation of graphene-polyurethane composites ...............................................91 5.2.4 Characterization of dispersion and composites ...............................................92 5.3. Results and Discussion.................93 5.3.1 Characterization and estimate of solvent exchange process........................................93 5.3.2 Mechanism of our-developed solvent exchange ...............................................97 5.3.3 WVTR improvement of graphene/polyurethane via the solvent exchange method........................98 5.3.4 Estimate graphene dispersibility in polyurethane by Cussler model...............................101 5.3.5 Improve WVTR of graphene/polyurethane through stretching.....................................103 5.3.6 Improve mechanical properties and thermal stability of graphene/polyurethane through solvent exchange.......................................106 5.4. Summary................................108 Chapter 6 Conclusion...........................110 Reference......................................112 | |
dc.language.iso | en | |
dc.title | 奈米銀線與石墨烯於功能性薄膜之應用:可撓曲式電極、超級電容、可拉式阻氣薄膜 | zh_TW |
dc.title | Silver nanowires and graphene sheets apply on applications of flexible electrode, supercapacitor and stretchable gas-permeation barrier | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),陳奕君(I-Chun Cheng),羅世強(Shyh-Chyang Luo),童世煌(Shih-Huang Tung) | |
dc.subject.keyword | 奈米銀線合成,透明導電阻氣薄膜,原子層沉積技術,超級電容器,石墨烯,可拉伸式阻氣膜,溶劑交換法, | zh_TW |
dc.subject.keyword | synthesis of silver nanowires,transparent conductive gas barrier,atomic layer deposition,supercapacitor,graphene,stretchable gas barrier,solvent exchange, | en |
dc.relation.page | 137 | |
dc.identifier.doi | 10.6342/NTU201900755 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-05-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。