Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorTing-Tzu Wuen
dc.contributor.author吳庭慈zh_TW
dc.date.accessioned2021-06-17T07:29:15Z-
dc.date.available2025-12-10
dc.date.copyright2021-02-19
dc.date.issued2020
dc.date.submitted2020-12-10
dc.identifier.citation1.National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf, (2020).
2.陳士偉, 淺談矽晶太陽能電池, 奈米通訊, 24(1), 38 (2017).
3.Yung Chii Liang, Ganesh S Samudra, and Chih-Fang Huang, Power Microelectronics: Device and Process Technologies, World Scientific Pub, (2017).
4.Wikipedia, Copper Indium Gallium Selenide, https://en.wikipedia.org/wiki/Copper_indium_gallium_selenide,
5.David P. McMeekin, Golnaz Sadoughi, Waqaas Rehman, Giles E. Eperon, Michael Saliba, Maximilian T. Hörantner, Amir Haghighirad, Nobuya Sakai, Lars Korte, Bernd Rech, Michael B. Johnston, Laura M. Herz, and Henry J. Snaith, A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells, Science, 351(6269), 151 (2016).
6.Ivo Borriello, Giovanni Cantele, and Domenico Ninno, Ab Initio Investigation of Hybrid Organic-Inorganic Perovskites Based on Tin Halides, Phys. Rev. B, 77(23), 235214 (2008).
7.Anna Amat, Edoardo Mosconi, Enrico Ronca, Claudio Quarti, Paolo Umari, Md. K. Nazeeruddin, Michael Gratzel, and Filippo De Angelis, Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting, Nano Lett., 14(6), 3608 (2014).
8.Zhengqi Shi and Ahalapitiya H. Jayatissa, Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods, Materials, 11(5), 729 (2018).
9.William Shockley and Hans J. Queisser, Detailed Balance Limit of Efficiency of P-N Junction Solar Cells, J. Appl. Phys., 32(3), 510-519 (1961).
10.Bo Chen, Xiaopeng Zheng, Yang Bai, Nitin P. Padture, and Jinsong Huang, Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites, Adv. Energy Mater., 7(14), 1602400 (2017).
11.Qamar Wali, Naveen Kumar Elumalai, Yaseen Iqbal, Ashraf Uddin, and Rajan Jose, Tandem Perovskite Solar Cells, Renew. Sust. Energ. Rev., 84, 89-110 (2018).
12.Colin D. Bailie and Michael D. McGehee, High-Efficiency Tandem Perovskite Solar Cells, MRS Bull., 40(8), 681 (2015).
13.Armin Richter, Martin Hermle, and Stefan W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE J. Photovolt., 3(4), 1184 (2013).
14.Jérémie Werner, Bjoern Niesen, and Christophe Ballif, Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? – an Overview, Adv. Mater. Interfaces, 5(1), 1700731 (2018).
15.Niraj N. Lal, Yasmina Dkhissi, Wei Li, Qicheng Hou, Yi‐Bing Cheng, and Udo Bach, Perovskite Tandem Solar Cells, Adv. Energy Mater., 7(18), 1602761 (2017).
16.Zhengshan (Jason) Yu, Mehdi Leilaeioun, and Zachary Holman, Selecting Tandem Partners for Silicon Solar Cells, Nat. Energy., 1(11), 16137 (2016).
17.Jungheum Yun, Ultrathin Metal Films for Transparent Electrodes of Flexible Optoelectronic Devices, Adv. Funct. Mater., 27(18), 1606641 (2017).
18.Wei Wang, Myungkwan Song, Tae‐Sung Bae, Yeon Hyun Park, Yong‐Cheol Kang, Sang‐Geul Lee, Sei‐Yong Kim, Dong Ho Kim, Sunghun Lee, Guanghui Min, Gun‐Hwan Lee, Jae‐Wook Kang, and Jungheum Yun, Transparent Ultrathin Oxygen-Doped Silver Electrodes for Flexible Organic Solar Cells, Adv. Funct. Mater., 24(11), 1551-1561 (2014).
19.Erik C. Garnett, Wenshan Cai, Judy J. Cha, Fakhruddin Mahmood, Stephen T. Connor, M. Greyson Christoforo, Yi Cui, Michael D. McGehee, and Mark L. Brongersma, Self-Limited Plasmonic Welding of Silver Nanowire junctions, Nat. Mater., 11(3), 241-249 (2012).
20.Yuichi Kato, Luis K. Ono, Michael V. Lee, Shenghao Wang, Sonia R. Raga, and Yabing Qi, Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes, Adv. Mater. Interfaces, 2(13), 1500195 (2015).
21.F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene Photonics and Optoelectronics, Nat. Photonics, 4(9), 611-622 (2010).
22.K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 490(7419), 192-200 (2012).
23.Amaia Zurutuza and Claudio Marinelli, Challenges and Opportunities in Graphene Commercialization, Nat. Nanotechnol., 9(10), 730-734 (2014).
24.林義成, 透明導電膜材料與製程, 國立彰化師範大學機電工程學系, (2015).
25.John E. Mahan, Physical Vapor Deposition of Thin Films, Wiley-Interscience, (2000).
26.Donald L. Smith, Thin-Film Deposition: Principles and Practice, McGraw-Hill Education, (1995).
27.Gregory J. Exarhos and Xiao-Dong Zhou, Discovery-Based Design of Transparent Conducting Oxide Films, Thin Solid Films, 515(18), 7025 (2007).
28.Qing Hou, John Buckeridge, Tomas Lazauskas, David Mora-Fonz, Alexey A. Sokol, Scott M. Woodley, and C. Richard A. Catlow, Defect Formation in In2o3 and Sno2: A New Atomistic Approach Based on Accurate Lattice Energies, J. Mater. Chem. C, 6(45), 12386-12395 (2018).
29.Sonya Calnan and Ayodhya Nath Tiwari, High Mobility Transparent Conducting Oxides for Thin Film Solar Cells, Thin Solid Films, 518(7), 1839 (2010).
30.Ho-Chul Lee, Electron Scattering Mechanisms in Indium–Tin-Oxide Thin Films Prepared at the Various Process Conditions, Appl. Surf. Sci., 252(10), 3428-3435 (2006).
31.Klaus Ellmer, Andreas Klein, and Bernd Rech, Transparent Conductive Zinc Oxide Basics and Applications in Thin Film Solar Cells, Springer, (2008).
32.N. Nadaud, N. Lequeux, M. Nanot, J. Jové, and T. Roisnel, Structural Studies of Tin-Doped Indium Oxide (Ito) and In4sn3o12, J. Solid State Chem., 135(1), 140-148 (1998).
33.H. Han, J. W. Mayer, and T. L. Alford, Band Gap Shift in the Indium-Tin-Oxide Films on Polyethylene Napthalate after Thermal Annealing in Air, J. Appl. Phys., 100(8), 083715 (2006).
34.Geeta Sanon, Raj Rup, and Abhai Mansingh, Band-Gap Narrowing and Band Structure in Degenerate Tin Oxide (Sno2) Films, Phys. Rev., B Condens. Matter, 44(11), 5672 (1991).
35.Timothy J. Coutts, David L. Young, and Xiaonan Li, Characterization of Transparent Conducting Oxides, MRS Bull., 25(8), 58-65 (2000).
36.Simeon C. Baker-Finch, Keith R. McIntosh, Di Yan, Kean Chern Fong, and Teng C. Kho, Near-Infrared Free Carrier Absorption in Heavily Doped Silicon, J. Appl. Phys., 116(6), 063106-06310612 (2014).
37.Monica Morales‐Masis, Stefaan De Wolf, Rachel Woods‐Robinson, Joel W. Ager, and Christophe Ballif, Transparent Electrodes for Efficient Optoelectronics, Adv. Electron. Mater., 3(5), 1600529 (2017).
38.楊宏仁, 氧化鋅薄膜成長技術及其在光電相關元件的應用, 國立清華大學材料科學工程學系博士論文, (2015).
39.林揚益, 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討, 國立中央大學化學工程與材料工程學系博士論文, (2013).
40.Monica Morales-Masis, Silvia Martin De Nicolas, Jakub Holovsky, Stefaan De Wolf, and Christophe Ballif, Low-Temperature High-Mobility Amorphous Izo for Silicon Heterojunction Solar Cells, IEEE J. Photovolt., 5(5), 1340-1347 (2015).
41.Erkan Aydin, Michele De Bastiani, Xinbo Yang, Muhammad Sajjad, Faisal Aljamaan, Yury Smirnov, Mohamed Nejib Hedhil, Wenzhu Liu, Thomas G. Allen, Lujia Xu, Emmanuel Van Kerschaver, Monica Morales-Masis, Udo Schwingenschlögl, and Stefaan De Wolf, Zr-Doped Indium Oxide (Izro) Transparent Electrodes for Perovskite-Based Tandem Solar Cells, Adv. Funct. Mater., 29(25), 1901741 (2019).
42.Ming Yang, Jiahan Feng, Guifeng Li, and Qun Zhang, Tungsten-Doped In2o3 Transparent Conductive Films with High Transmittance in near-Infrared Region, J. Cryst. Growth, 310(15), 3474-3477 (2008).
43.Eiji Kobayashi, Yoshimi Watabe, Tetsuya Yamamoto, and Yoichi Yamada, Cerium Oxide and Hydrogen Co-Doped Indium Oxide Films for High-Efficiency Silicon Heterojunction Solar Cells, Sol. Energy Mater Sol. Cells, 149, 75 (2016).
44.F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hüpkes, D. Hrunski, and B. Rech, Improved Electrical Transport in Al-Doped Zinc Oxide by Thermal Treatment, J. Appl. Phys., 107(1), 013708 (2010).
45.R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A, 32(5), 751-767 (1976).
46.Jeré mie Werner, Ching-Hsun Weng, Arnaud Walter, Luc Fesquet, Johannes Peter Seif, Stefaan De Wolf, Bjoern Niesen, and Christophe Ballif, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 Cm2, J. Phys. Chem. Lett., 7(1), 161 (2016).
47.Wen-Fa Wu and Bi-Shiou Chiou, Effect of Oxygen Concentration in the Sputtering Ambient on the Microstructure, Electrical and Optical Properties of Radio-Frequency Magnetron-Sputtered Indium Tin Oxide Films, Semicond. Sci. Technol., 11(2), 196 (1996).
48.Sigma-Aldrich, Price (Twd) Quantity of Tin, https://www.sigmaaldrich.com/catalog/search?term=sn interface=Molecular%20Formula N=0 mode=match%20partialmax lang=en region=TW focus=product, (2020).
49.Sigma-Aldrich, Price (Twd) Quantity of Cerium, https://www.sigmaaldrich.com/catalog/search?term=cerium interface=All N=0 mode=match%20partialmax lang=en region=TW focus=product, (2020).
50.Yulia Galagan, Erica W.C. Coenen, Wiljan J.H. Verhees, and Ronn Andriessen, Towards the Scaling up of Perovskite Solar Cells and Modules, J. Mater. Chem. A, 4(15), 5700-5705 (2016).
51.Sameer Deshpande, Swanand Patil, Satyanarayana VNT Kuchibhatla, and Sudipta Seal, Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide, Appl. Phys. Lett., 87(13), 133113 (2005).
52.Ka Wang, Yongqin Chang, Liang Lv, and Yi Long, Effect of Annealing Temperature on Oxygen Vacancy Concentrations of Nanocrystalline Ceo2 Film, Appl. Surf. Sci., 351, 164-168 (2015).
53.You Seung Rim, Dong Lim Kim, Woong Hee Jeong, and Hyun Jae Kim, Effect of Zr Addition on Znsno Thin-Film Transistors Using a Solution Process, Appl. Phys. Lett., 97(23), 233502 (2010).
54.Anshuman Sahai and Navendu Goswami, Probing the Dominance of Interstitial Oxygen Defects in Zno Nanoparticles through Structural and Optical Characterizations, Ceram. Int., 40(9, Part B), 14569-14578 (2014).
55.Jie Zhang, Jianguo Lu, Qingjun Jiang, Bin Lu, Xinhua Pan, Lingxiang Chen, and Zhizhen Ye, Stability of Amorphous Inalzno Thin-Film Transistors, J. Vac. Sci. Technol. B, 32(1), 010602 (2014).
56.Kevin A. Bush, Colin D. Bailie, Ye Chen, Andrea R. Bowring, Wei Wang, Wen Ma, Tomas Leijtens, Farhad Moghadam, and Michael D. McGehee, Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered Ito Electrode, Adv. Mater., 28(20), 3937 (2016).
57.The Duong, Niraj Lal, Dale Grant, Daniel Jacobs, Peiting Zheng, Shakir Rahman, Heping Shen, Matthew Stocks, Andrew Blakers, Klaus Weber, Thomas P. White, and Kylie R. Catchpole, Semitransparent Perovskite Solar Cell with Sputtered Front and Rear Electrodes for a Four-Terminal Tandem, IEEE J. Photovolt., 6(3), 679 (2016).
58.Manoj Jaysankar, Miha Filipič, Bartosz Zielinski, Raphael Schmager, Wenya Song, Weiming Qiu, Ulrich W. Paetzold, Tom Aernouts, Maarten Debucquoy, Robert Gehlhaara, and Jef Poortmans, Perovskite–Silicon Tandem Solar Modules with Optimised Light Harvesting, Energy Environ. Sci., 11(6), 1489 (2018).
59.Jérémie Werner, Loris Barraud, Arnaud Walter, Matthias Bräuninger, Florent Sahli, Davide Sacchetto, Nicolas Tétreault, Bertrand Paviet-Salomon, Soo-Jin Moon, Christophe Allebé, Matthieu Despeisse, Sylvain Nicolay, Stefaan De Wolf, Bjoern Niesen, and Christophe Ballif, Efficient near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells, ACS Energy Lett., 1(2), 474 (2016).
60.Dong Zhang, Mehrdad Najafi, Valerio Zardetto, Maarten Dörenkämper, Xuedong Zhou, Sjoerd Veenstra, L. J. Geerligs, Tom Aernouts, and Ronn Andriessen, High Efficiency 4-Terminal Perovskite/C-Si Tandem Cells, Sol. Energy Mater Sol. Cells, 188, 1 (2018).
61.Eiji Kobayashi, Yoshimi Watabe, and Tetsuya Yamamoto, High-Mobility Transparent Conductive Thin Films of Cerium-Doped Hydrogenated Indium Oxide, Appl. Phys. Express, 8(1), 015505 (2014).
62.Takashi Koida, Yuko Ueno, and Hajime Shibata, In2o3-Based Transparent Conducting Oxide Films with High Electron Mobility Fabricated at Low Process Temperatures, Phys. Status Solidi A, 215(7), 1700506 (2018).
63.Takashi Koida, Michio Kondo, Koichi Tsutsumi, Akio Sakaguchi, Michio Suzuki, and Hiroyuki Fujiwara, Hydrogen-Doped In2o3 Transparent Conducting Oxide Films Prepared by Solid-Phase Crystallization Method, J. Appl. Phys., 107, 033514 (2010).
64.Moritz H. Futscher and Bruno Ehrler, Efficiency Limit of Perovskite/Si Tandem Solar Cells, ACS Energy Lett., 1(4), 863 (2016).
65.Rohit Prasanna, Aryeh Gold-Parker, Tomas Leijtens, Bert Conings, Aslihan Babayigit, Hans-Gerd Boyen, Michael F. Toney, and Michael D. McGehee, Band Gap Tuning Via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics, J. Am. Chem. Soc., 139(32), 11117 (2017).
66.Martina Trahms, Marko Jost, Cham Thi Trinh, Natalie Preissler, Steve Albrecht, Rutger Schlatmann, Bernd Rech, and Daniel Amkreutz, All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites, IEEE J. Photovolt., 9(3), 621 (2019).
67.Ajeet Rohatgi, Kai Zhu, Jinhui Tong, Dong Hoe Kim, Elsa Reichmanis, Brian Rounsaville, Vivek Prakash, and Young-Woo Ok, 26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/Siox Passivating Contact Silicon Cell, IEEE J. Photovolt., 10(2), 417 (2020).
68.Jun Peng, The Duong, Xianzhong Zhou, Heping Shen, Yiliang Wu, Hemant Kumar Mulmudi, Yimao Wan, Dingyong Zhong, Juntao Li, Takuya Tsuzuki, Klaus J. Weber, Kylie R. Catchpole, and Thomas P. White, Efficient Indium-Doped Tiox Electron Transport Layers for High-Performance Perovskite Solar Cells and Perovskite-Silicon Tandems, Adv. Energy Mater., 7(4), 1601768 (2017).
69.Manoj Jaysankar, Miha Filipic, Bartosz Zielinski, Raphael Schmager, Wenya Song, Weiming Qiu, Ulrich W. Paetzold, Tom Aernouts, Maarten Debucquoy, Robert Gehlhaar, and Jef Poortmans, Perovskite–Silicon Tandem Solar Modules with Optimised Light Harvesting, Energy Environ. Sci., 11(6), 1489 (2018).
70.Herlina Arianita Dewi, Hao Wang, Jia Li, Maung Thway, Ranjani Sridharan, Rolf Stangl, Fen Lin, Armin G. Aberle, Nripan Mathews, Annalisa Bruno, and Subodh Mhaisalkar, Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems, ACS Appl. Mater. Interfaces, 11(37), 34178 (2019).
71.Saba Gharibzadeh, Ihteaz M. Hossain, Paul Fassl, Bahram Abdollahi Nejand, Tobias Abzieher, Moritz Schultes, Erik Ahlswede, Philip Jackson, Michael Powalla, Sören Schäfer, Michael Rienäcker, Tobias Wietler, Robby Peibst, Uli Lemmer, Bryce S. Richards, and Ulrich W. Paetzold, 2d/3d Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and Cigs, Adv. Funct. Mater., 30(19), 1909919 (2020).
72.Helen Hejin Park, Jincheol Kim, Geunjin Kim, Hyunmin Jung, Songhee Kim, Chan Su Moon, Seon Joo Lee, Seong Sik Shin, Xiaojing Hao, Jae Sung Yun, and Martin A. Green, Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications, Small Methods, 4(5), 2000074 (2020).
73.The Duong, YiLiang Wu, Heping Shen, Jun Peng, Xiao Fu, Daniel Jacobs, Er‐Chien Wang, Teng Choon Kho, Kean Chern Fong, Matthew Stocks, Evan Franklin, Andrew Blakers, Ngwe Zin, Keith McIntosh, Wei Li, Yi‐Bing Cheng, Thomas P. White, Klaus Weber, and Kylie Catchpole, Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency, Adv. Energy Mater., 7(14), 1700228 (2017).
74.Manoj Jaysankar, Benedito A. L. Raul, Joao Bastos, Claire Burgess, Christ Weijtens, Mariadriana Creatore, Tom Aernouts, Yinghuan Kuang, Robert Gehlhaar, Afshin Hadipour, and Jef Poortmans, Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells, ACS Energy Lett., 4(1), 259 (2019).
75.The Duong, Huyen Pham, Teng Choon Kho, Pheng Phang, Kean Chern Fong, Di Yan, Yanting Yin, Jun Peng, Md Arafat Mahmud, Saba Gharibzadeh, Bahram Abdollahi Nejand, Ihteaz M. Hossain, Motiur Rahman Khan, Naeimeh Mozaffari, YiLiang Wu, Heping Shen, Jianghui Zheng, Haoxin Mai, Wensheng Liang, Chris Samundsett, Matthew Stocks, Keith McIntosh, Gunther G. Andersson, Uli Lemmer, Bryce S. Richards, Ulrich W. Paetzold, Anita Ho‐Ballie, Yun Liu, Daniel Macdonald, Andrew Blakers, Jennifer Wong‐Leung, Thomas White, Klaus Weber, and Kylie Catchpole, High Efficiency Perovskite-Silicon Tandem Solar Cells: Effect of Surface Coating Versus Bulk Incorporation of 2d Perovskite, Adv. Energy Mater., 10(9), 1903553 (2020).
76.Bin Chen, Se-Woong Baek, Yi Hou, Erkan Aydin, Michele De Bastiani, Benjamin Scheffel, Andrew Proppe, Ziru Huang, Mingyang Wei, Ya-Kun Wang, Eui-Hyuk Jung, Thomas G. Allen, Emmanuel Van Kerschaver, F. Pelayo García de Arquer, Makhsud I. Saidaminov, Sjoerd Hoogland, Stefaan De Wolf, and Edward H. Sargent, Enhanced Optical Path and Electron Diffusion Length Enable High-Efficiency Perovskite Tandems, Nat. Commun., 11(1), 1257 (2020).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73338-
dc.description.abstract有鑑於矽晶太陽能電池具有高效率及良好的穩定性,而在太陽光電市場居於主導地位,其光電轉換效率最高可達到26.7 %,已經非常接近理論效率極限29.4 %。為了突破此極限,與成本低、製程簡單且效率高的鈣鈦礦電池搭配開發鈣鈦礦/矽晶串疊型太陽能電池逐漸受到矚目。鈣鈦礦上電池負責吸收太陽光譜中短波長、高能量之可見光,而長波長、低能量之近紅外光則穿過上電池傳遞至矽晶下電池吸收。因此,開發具有高導電性、高可見光穿透度及近紅外光穿透度之透明電極對於鈣鈦礦上電池顯得極為重要。然而,市面上常見的氧化銦錫(ITO)及氟摻雜氧化錫(FTO)因具有相當高的自由載子密度,使其近紅外光穿透度相對較低,故不適用於鈣鈦礦上電池中作為透明電極。有鑑於此,本研究引入具有高載子遷移率的氧化銦鈰(Cerium doped indium oxide, ICO)作為透明電極材料,可以較低的氧化鈰摻雜量降低自由載子密度而增加近紅外光穿透度,同時維持高導電性。
本研究依據半透明鈣鈦礦太陽能電池的製程需求與限制,分別以低功率及鍍率快的直流濺鍍技術製備ICO透明上電極,並以高功率、成膜均勻且緻密度高的射頻濺鍍技術製備ICO透明下電極。透過熱退火處理、在濺鍍製程中添加適量氧氣以及調整薄膜厚度等方式來改善ICO薄膜的電性及光學性質。經過最佳化的ICO透明上電極及透明下電極,載子遷移率分別可達到32.51 cm2/Vs及104.7 cm2/Vs,用以實現低片電阻28.75 Ω/sq及9.99 Ω/sq,並具備優異的近紅外光穿透度80.00 %及84.42 %,相較於ITO上電極及FTO下電極之近紅外光穿透度為75.43 %及77.69%皆有顯著改善。進一步將ICO薄膜依序取代鈣鈦礦電池中常見的ITO透明上電極及FTO透明下電極,使鈣鈦礦上電池之近紅外光穿透度由53.73 %提升至76.74 %,並使矽晶下電池獲得2.9 mA/cm2之電流密度及1.92 %之效率提升。最後以機械式堆疊四接點鈣鈦礦/矽晶串疊型太陽能電池,其光電轉換效率最高可達到26.2 %,與同樣以甲基胺基碘化鉛(MAPbI3)作為鈣鈦礦材料之相關文獻相比為效率最高值。
zh_TW
dc.description.abstractFor decades, crystalline silicon (c-Si) solar cells have dominated the solar industry because of its high power conversion efficiency (PCE) and good stability. However, the current efficiency record of c-Si solar cells is 26.7 %, approaching a theoretical efficiency limit of 29.4 %. To surpass this single junction efficiency limit, developing silicon-based tandem solar cells is one of the feasible ways to improve PCE. Among various solar cells, perovskite solar cell is considered as a promising candidate for being the top cell of silicon-based tandem solar cells, not only for its solution processibility and low cost but also for its high efficiency. In a perovskite/silicon tandem solar cell, perovskite top cells with wide bandgap (Eg) absorb high energy visible light in the solar spectrum, while silicon bottom cells with narrow Eg absorb the passed through low energy near-infrared light (NIR). For that reason, establishing transparent electrodes with high conductivity and high visible-NIR transmittance is extremely important for perovskite top cells. Nevertheless, mostly used commercial tin-doped indium oxide (ITO) and fluorine-doped tin oxide (FTO) are not suitable for the application of tandem solar cells because of their high free carrier density, which results in low NIR transmittance. Here, we introduce cerium-doped indium oxide (ICO) with excellent carrier mobility and low free carrier density as transparent electrodes. These two characteristics make ICO transparent electrodes maintain high conductivity and increase NIR transmittance, respectively.
According to the requirements and limitations of fabricating semi-transparent perovskite solar cells, ICO top electrodes are grown by low power direct current (DC) sputtering system with a high deposition rate. On the other hand, ICO bottom electrodes are grown by high power radio frequency (RF) sputtering system with uniform thin film formation. Furthermore, we systematically investigate the processing parameters such as post-annealing treatment, oxygen fraction in the sputtering ambient, and film thickness, aiming to improve the electrical and optical properties of ICO thin films. Optimized ICO transparent top electrode and bottom electrode feature very high carrier mobility up to 32.51 cm2/Vs and 104.7 cm2/Vs, and achieve low sheet resistance of 28.75 Ω/sq and 9.99 Ω/sq, respectively. Moreover, the high NIR transmittance of 80.00 % and 84.42 % can be attained, which are significantly improved compared to 75.43 % of ITO top electrode and 77.69 % of FTO bottom electrode. Overall, a 23 % NIR transmittance improvement in perovskite top cells can be obtained by replacing FTO bottom electrode and ITO top electrode with ICO thin film, respectively. Thus, an absolute current gain of 2.9 mA/cm2 in silicon bottom cells is achieved, resulting in an improving PCE of 1.92 %. For four-terminal perovskite/silicon tandem solar cells, we reach a PCE improvement from 24.3 % to 26.2 %, which is the highest performance reported for tandem solar cells using methylammonium lead iodide (MAPbI3) as perovskite materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:29:15Z (GMT). No. of bitstreams: 1
U0001-1012202003112500.pdf: 5017563 bytes, checksum: 2f631e6b5af07958bd457491de662d92 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XV
第一章 前言與文獻回顧 1
1.1 單接面太陽能電池之發展現況 1
1.1.1 矽晶太陽能電池 1
1.1.2 薄膜太陽能電池 3
1.1.3 鈣鈦礦太陽能電池 4
1.2 單接面太陽能電池之理論效率極限 5
1.2.1 蕭基-奎伊瑟極限 (Shockley-Queisser limit) 5
1.2.2 突破蕭基-奎伊瑟極限之方法──多接面太陽能電池 9
1.3 鈣鈦礦/矽晶串疊型太陽能電池及其堆疊結構 11
1.4 應用於鈣鈦礦/矽晶串疊型太陽能電池之透明電極 13
1.4.1 透明電極需具備之條件 14
1.4.2 透明電極之材料選擇 15
1.5 透明導電氧化物 18
1.5.1 透明導電氧化物薄膜之濺鍍製程 18
1.5.2 透明導電氧化物之導電機制 20
1.5.3 透明導電氧化物之光學性質 23
1.5.4 透明導電氧化物應用於鈣鈦礦/矽晶串疊型太陽能電池之使用限制 27
1.5.5 改善透明導電氧化物之電性及光學性質的方法 28
1.6 研究動機與目標 35
第二章 實驗方法 37
2.1 實驗用化學物質列表 37
2.2 實驗用儀器 38
2.3 半透明鈣鈦礦太陽能電池之材料準備 39
2.3.1 氧化鎳奈米粒子電洞傳輸層溶液 39
2.3.2 CH3NH3PbI3鈣鈦礦前驅物溶液 40
2.3.3 PC61BM電子傳輸層溶液 41
2.3.4 TBAOH-SnO2緩衝層溶液 41
2.3.5 氧化銦鈰透明下電極之薄膜沉積 42
2.3.6 氧化銦鈰透明上電極之薄膜沉積 42
2.4 半透明鈣鈦礦太陽能電池之製程方法 43
第三章 結果與討論 45
3.1 氧化銦鈰薄膜應用於半透明鈣鈦礦太陽能電池之實驗設計 45
3.2 以氧化銦鈰薄膜作為半透明鈣鈦礦太陽能電池之透明上電極 52
3.2.1 濺鍍製程中不同氧氣通量對氧化銦鈰薄膜之材料特性影響 52
3.2.2 濺鍍製程中不同氧氣通量對氧化銦鈰薄膜之電性及光學性質影響 55
3.2.3 氧化銦鈰薄膜之厚度對其電性及光學性質影響 59
3.2.4 最佳化氧化銦鈰薄膜應用於半透明鈣鈦礦太陽能電池之元件表現 62
3.3 以氧化銦鈰薄膜作為半透明鈣鈦礦太陽能電池之透明下電極 67
3.3.1 熱退火氣氛對氧化銦鈰薄膜之材料特性影響 67
3.3.2 熱退火氣氛對氧化銦鈰薄膜之電性及光學性質影響 69
3.3.3 熱退火溫度對氧化銦鈰薄膜之材料特性影響 71
3.3.4 熱退火溫度對氧化銦鈰薄膜之電性及光學性質影響 75
3.3.5 濺鍍製程中不同氧氣通量對氧化銦鈰薄膜之材料特性影響 79
3.3.6 濺鍍製程中不同氧氣通量對氧化銦鈰薄膜之電性及光學性質影響 81
3.3.7 氧化銦鈰薄膜之厚度對其電性及光學性質影響 84
3.3.8 最佳化氧化銦鈰薄膜應用於半透明鈣鈦礦太陽能電池之元件表現 86
3.4氧化銦鈰透明電極應用於鈣鈦礦/矽晶串疊型太陽能電池之元件表現 89
第四章 結論 96
第五章 建議與未來工作 99
參考文獻 106
dc.language.isozh-TW
dc.title以濺鍍技術製備氧化銦鈰透明電極並應用於四接點鈣鈦礦/矽晶串疊型太陽能電池zh_TW
dc.titleSputtered cerium doped indium oxide transparent electrode for 4-terminal perovskite/silicon tandem solar cell
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡豐羽(Feng-Yu Tsai),吳明忠(Ming-Chung Wu),黃裕清(Yu-Ching Huang)
dc.subject.keyword透明電極,濺鍍技術,氧化銦鈰,四接點式,鈣鈦礦,矽晶,串疊型,太陽能電池,zh_TW
dc.subject.keywordtransparent electrode,sputtering deposition,cerium-doped indium oxide (ICO),four-terminal,perovskite,silicon,tandem,solar cell,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202004410
dc.rights.note有償授權
dc.date.accepted2020-12-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1012202003112500.pdf
  目前未授權公開取用
4.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved