請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73271
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新(Wei-Hsing Tuan) | |
dc.contributor.author | Hao-Yu Chang | en |
dc.contributor.author | 張澔宇 | zh_TW |
dc.date.accessioned | 2021-06-17T07:25:43Z | - |
dc.date.available | 2022-12-14 | |
dc.date.copyright | 2020-12-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-12-15 | |
dc.identifier.citation | [1] V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi and G. Logroscino, “Bone substitutes in orthopaedic surgery: from basic science to clinical practice,” J. Mater. Sci.-Mater. Med., 25 2445-2461 (2014). [2] M. Bohner, “Resorbable biomaterials as bone graft substitutes,” Mater. Today, 13 24-30 (2010). [3] S. Lee, M. Porter, S. Wasko, G. Lau, P. Y. Chen, E. E. Novitskaya, A. P. Tomsia, A. Almutairi, M. A. Meyers and J. McKittrick, “Potential bone replacement materials prepared by two methods,” Mater. Res. Soc. Symp. Proc., 1418 177-188 (2012). [4] C. M. Murphy, M. G. Haugh and F. J. O'Brien, “The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering,” Biomaterials, 31 461-466 (2010). [5] S. V. Dorozhkin and M. Epple, “Biological and medical significance of calcium phosphates,” Angew. Chem. Int. Ed. Engl., 41 3130-3146 (2002). [6] S. Torgbo and P. Sukyai, “Bacterial cellulose-based scaffold materials for bone tissue engineering,” Appl. Mater. Today, 11 34-49 (2018). [7] S. Bose, M. Roy and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol., 30 546-554 (2012). [8] L. L. Hench, “Bioceramics: from concept to clinic,” J. Am. Ceram. Soc., 74 1487-1510 (1991). [9] R. Kasir, V. N. Vernekar and C. T. Laurencin, “Inductive biomaterials for bone regeneration,” J. Mater. Res., 32 1047-1060 (2017). [10] W. S. Pietrzak and R. Ronk, “Calcium sulfate bone void filler: a review and a look ahead,” J. Craniofac. Surg., 11 327-333 (2000). [11] M. Nilsson, M. H. Zheng and M. Tägil, “The composite of hydroxyapatite and calcium sulphate: a review of preclinical evaluation and clinical applications,” Expert Rev. Med. Devices, 10 675-684 (2013). [12] D. W. Buck and G. A. Dumanian, “Bone biology and physiology: part Ι. The fundamentals,” Plast. Reconstr. Surg., 129 1314-1320 (2012). [13] B. Clarke, “Normal bone anatomy and physiology,” Clin. J. Am. Soc. Nephrol., 3 S131-S139 (2008). [14] J. A. Buckwalter, M. J. Glimcher, R. R. Copper and R. Recker, “Bone biology. Part Ι: structure, blood supply, cells, matrix, and mineralization,” J. Bone Joint Surg.-Am. Vol., 77 1256-1275 (1995). [15] M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Y. Y. Kim, M. J. Kaufman, E. P. Douglas and L. B. Gower, “Bone structure and formation: a new perspective,” Mater. Sci. Eng. R-Rep., 58 77-116 (2007). [16] K. J. Jepsen, “System analysis of bone,” Wiley Interdiscip. Rev. Syst. Biol. Med., 1 73-88 (2009). [17] W. R. Moore, S. E. Graves and G. I. Bain, “Synthetic bone graft substitutes,” ANZ J. Surg., 71 354-361 (2001). [18] M. Zaidi, B. S. Moonga and C. L. H. Huang, “Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption,” Biol. Rev. Camb. Philos. Soc., 79 79-100 (2004). [19] V. Karageorgiou and D. Kaplan, “Porosity of 3D Biomaterial scaffolds and osteogenesis,” Biomaterials, 26 5474-5491 (2005). [20] B. P. McNamara, A. Toni and D. Taylor, “Effects of implant material properties and implant-bone bonding on stress shielding in cementless total hip arthroplasty,” Key Eng. Mater., 99 309-314 (1995). [21] K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, 27 3413-3431 (2006). [22] A. K. Azab, B. Orkin, V. Doviner, A. Nissan, M. Klein, M. Srebnik and A. Rubinstein, “Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis,” J. Control. Release, 111 281-289 (2006). [23] D. Eglin and M. Alini, “Degradable polymeric materials for osteosynthesis: tutorial,” Eur. Cells Mater., 16 80-91 (2008). [24] S. F. Hulbert, J. C. Bokros, L. L. Hench, J. Wilson and G. Heimke, “Ceramics in clinical applications: past, present and future,” in High Tech Ceramics, P. Vincenzini, Ed., Amsterdam: Elsevier, 189-213 (1987). [25] L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res., 5 117-141 (1971). [26] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum and C. von Schnakenburg, “Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta,” Biomaterials, 27 4955-4962 (2006). [27] J. K. F. Suh and H. W. T. Matthew, “Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review,” Biomaterials, 21 2589-2598 (2000). [28] J. L. West and J. A. Hubbell, “Polymeric biomaterials with degradation sites for proteases involved in cell migration,” Macromolecules, 32 241-244 (1999). [29] S. Gogolewski, M. Jovanovic, S. M. Perren, J. G. Dillon and M. K. Hughes, “Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA),” J. Biomed. Mater. Res., 27 1135-1148 (1993). [30] L. L. Hench, J. W. Hench and D. C. Greenspan, “Bioglass: a short history and bibliography,” J. Aust. Ceram. Soc., 40 1-42 (2004). [31] M. V. Thomas and D. A. Puleo, “Calcium sulfate: properties and clinical applications,” J. Biomed. Mater. Res. B Appl. Biomater., 88 597-610 (2009). [32] F. Wirsching, “Calcium sulfate,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 519-550 (2012). [33] M. Ikenaga, P. Hardouin, J. Lemaître, H. Andrianjatovo and B. Flautre, “Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics,” J. Biomed. Mater. Res., 40 139-144 (1998). [34] P. Habibovic and K. de Groot, “Osteoinductive biomaterials - properties and relevance in bone repair,” J. Tissue Eng. Regen. Med., 1 25-32 (2007). [35] P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials, 29 944-953 (2008). [36] S. L. Teitelbaum, “Bone resorption by osteoclasts,” Science, 289 1504-1508 (2000). [37] W. R. Walsh, P. Morberg, Y. Yu, J. L. Yang, W. Haggard, P. C. Sheath, M. Svehla and W. J. M. Bruce, “Response of a calcium sulfate bone graft substitute in a confined cancellous defect,” Clin. Orthop. Rel. Res., 406 228-236 (2003). [38] D. Freyer and W. Voigt, “Crystallization and phase stability of CaSO4 and CaSO4-based salts,” Mon. Chem., 134 693-719 (2003). [39] N. B. Singh and B. Middendorf, “Calcium sulphate hemihydrate hydration leading to gypsum crystallization,” Prog. Cryst. Growth Charact. Mater., 53 57-77 (2007). [40] L. F. Peltier, “The use of plaster of Paris to fill large defects in bone: a preliminary report,” Am. J. Surg., 97 311-315 (1959). [41] H. Dressmann, “Ueber knochenplombierung bei hohlenformigen defekten des knochens,” Beitr. Klin. Chir., 9 804-810 (1892). [42] K. N. Lewis, M. V. Thomas and D. A. Puleo, “Mechanical and degradation behavior of polymer-calcium sulfate composites,” J. Mater. Sci.-Mater. Med., 17 531-537 (2006). [43] E. K. Park, Y. E. Lee, J. Y. Choi, S. H. Oh, H. I. Shin, K. H. Kim, S. Y. Kim and S. Kim, “Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells,” Biomaterials, 25 3403-3411 (2004). [44] T. Kameda, H. Mano, Y. Yamada, H. Takai, N. Amizuka, M. Kobori, N. Izumi, H. Kawashima, H. Ozawa, K. Ikeda, A. Kameda, Y. Hakeda and M. Kumegawa, “Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells,” Biochem. Biophys. Res. Commun., 245 419-422 (1998). [45] L. F. Peltier, “The use of plaster of Paris to fill defects in bone,” Clin. Orthop., 21 1-31 (1961). [46] G. Intini, S. Andreana, F. E. Intini, R. J. Buhite and L. A. Bobek, “Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration,” J. Transl. Med., 5 13 (2007). [47] T. C. Shih, N. C. Teng, P. D. Wang, C. T. Lin, J. C. Yang, S. W. Fong, H. K. Lin and W. J. Chang, “In vivo evaluation of resorbable bone graft substitutes in beagles: histological properties,” J. Biomed. Mater. Res. Part A, 101A 2405-2411 (2013). [48] P. P. Cortez, M. A. Silva, M. Santos, P. Armada-da-Silva, A. Afonso, M. A Lopes, J. D. Santos and A. C. Maurício, “A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: in vivo biological behavior in a sheep model,” J. Biomater. Appl., 27 201-217 (2012). [49] G. H. Lee, J. G. Khoury, J. E. Bell and J. A. Buckwalter, “Adverse reactions to OsteoSet bone graft substitute, the incidence in a consecutive series,” Iowa Orthop. J., 22 35-38 (2002). [50] M. Okada and T. Matsumoto, “Synthesis and modification of apatite nanoparticles for use in dental and medical applications,” Jpn. Dent. Sci. Rev., 51 85-95 (2015). [51] S. V. Dorozhkin, “Bioceramics of calcium orthophosphates,” Biomaterials, 31 1465-1485 (2010). [52] P. Koutsoukos, Z. Amjad, M. B. Tomson and G. H. Nancollas, “Crystallization of calcium phosphates. A constant composition study,” J. Am. Chem. Soc., 102 1553-1557 (1980). [53] F. C. M. Driessens, M. G. Boltong, O. Bermúdez, J. A. Planell, M. P. Ginebra and E. Fernández, “Effective formulations for the preparation of calcium phosphate bone cements,” J. Mater. Sci.-Mater. Med., 5 164-170 (1994). [54] S. Takagi, L. C. Chow and K. Ishikawa, “Formation of hydroxyapatite in new calcium phosphate cements,” Biomaterials, 19 1593-1599 (1998). [55] R. Z. LeGeros, “Variations in the crystalline components of human dental calculus: I. Crystallographic and spectroscopic methods of analysis,” J. Dent. Res., 53 45-50 (1974). [56] G. H. Nancollas and W. Wu, “Biomineralization mechanisms: a kinetics and interfacial energy approach,” J. Cryst. Growth, 211 137-142 (2000). [57] X. Yang and Z. Wang, “Synthesis of biphasic ceramics of hydroxyapatite and β-tricalcium phosphate with controlled phase content and porosity,” J. Mater. Chem., 8 2233-2237 (1998). [58] E. Fernández, F. J. Gil, M. P. Ginebra, F. C. M. Driessens, J. A. Planell and S. M. Best, “Calcium phosphate bone cements for clinical applications. Part Ⅱ: precipitate formulation during setting reactions,” J. Mater. Sci.-Mater. Med., 10 177-183 (1999). [59] H. Yuan, J. D. de Bruijn, Y. Li, J. Feng, Z. Yang, K. de Groot and X. Zhang, “Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP,” J. Mater. Sci.-Mater. Med., 12 7-13 (2001). [60] D. Skrtic, A. W. Hailer, S. Takagi, J. M. Antonucci and E. D. Eanes, “Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel,” J. Dent. Res., 75 1679-1686 (1996). [61] E. Fernández, F. J. Gil, M. P. Ginebra, F. C. M. Driessens, J. A. Planell and S. M. Best, “Calcium phosphate bone cements for clinical applications. Part Ι: solution chemistry,” J. Mater. Sci.-Mater. Med., 10 169-176 (1999). [62] J. C. Elliot, “Structure and chemistry of the apatites and other calcium orthophosphates,” in Studies in Inorganic Chemistry, Amsterdam: Elsevier, 18 (1994). [63] N. Döbelin, R. Luginbühl and M. Bohner, “Synthetic calcium phosphate ceramics for treatment of bone fractures,” Chimia, 64 723-729 (2010). [64] R. Z. LeGeros, “Calcium phosphates in oral biology and medicine,” in Monographs in Oral Science, H. M. Myers, Ed., Basel: Karger, 15 (1991). [65] R. Z. LeGeros, “Biological and synthetic apatites,” in Hydroxyapatite and Related Materials, P. W. Brown and B. Constantz, Ed., Florida: CRC Press, 3-28 (1994). [66] Z. Zyman, I. Ivanov, D. Rochmistrov, V. Glushko, N. Tkachenko and S. Kijko, “Sintering peculiarities for hydroxyapatite with different degrees of crystallinity,” J. Biomed. Mater. Res., 54 256-263 (2001). [67] M. A. Malik, D. A. Puleo, R. Bizios and R. H. Doremus, “Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment,” Biomaterials, 13 123-128 (1992). [68] K. Gomi, B. Lowenberg, G. Shapiro and J. E. Davies, “Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro,” Biomaterials, 14 91-96 (1993). [69] X. Wu, N. Itoh, T. Taniguchi, T. Nakanishi and K. Tanaka, “Requirement of calcium and phosphate ions in expression of sodium-dependent vitamin C transporter 2 and osteopontin in MC3T3-E1 osteoblastic cells,” Biochim. Biophys. Acta-Mol. Cell Res., 1641 65-70 (2003). [70] M. Kanatani, T. Sugimoto, M. Fukase and T. Fujita, “Effect of elevated extracellular calcium on the proliferation of osteoblastic MC3T3-E1 cells: its direct and indirect effects via monocytes,” Biochem. Biophys. Res. Commun., 181 1425-1430 (1991). [71] M. Zaidi, H. K. Datta, A. Patchell, B. Moonga and I. Maclntyre, “‘Calcium-activated’ intracellular calcium elevation: a novel mechanism of osteoclast regulation,” Biochem. Biophys. Res. Commun., 163 1461-1465 (1989). [72] M. E. Norman, H. M. Elgendy, E. C. Shors, S. F. El-Amin and C. T. Laurencin, “An in-vitro evaluation of coralline porous hydroxyapatite as a scaffold for osteoblast growth,” Clin. Mater., 17 85-91 (1994). [73] O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet and G. Daculsi, “Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth,” Biomaterials, 19 133-139 (1998). [74] O. Gauthier, E. Goyenvalle, J. M. Bouler, J. Guicheux, P. Pilet, P. Weiss and G. Daculsi, “Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone,” J. Mater. Sci.-Mater. Med., 12 385-390 (2001). [75] R. Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares and J. P. LeGeros, “Biphasic calcium phosphate bioceramics: preparation, properties and applications,” J. Mater. Sci.-Mater. Med., 14 201-209 (2003). [76] T. L. Arinzeh, T. Tran, J. Mcalary and G. Daculsi, “A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation,” Biomaterials, 26 3631-3638 (2005). [77] G. Daculsi, A. P. Uzel, P. Weiss, E. Goyenvalle and E. Aguado, “Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels,” J. Mater. Sci.-Mater. Med., 21 855-861 (2010). [78] T. Miramond, P. Corre, P. Borget, F. Moreau, J. Guicheux, G. Daculsi and P. Weiss, “Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse model,” J. Biomater. Appl., 29 595-604 (2014). [79] K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka and H. Kobayashi, “Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits,” Biomaterials, 23 407-412 (2002). [80] H. Yuan, C. A. van Blitterswijk, K. de Groot and J. D. de Bruijn, “Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds,” Tissue Eng., 12 1607-1615 (2006). [81] P. Habibovic, M. C. Kruyt, M. V. Juhl, S. Clyens, R. Martinetti, L. Dolcini, N. Theilgaard and C. A. van Blitterswijk, “Comparative in vivo study of six hydroxyapatite-based bone graft substitutes, “J. Orthop. Res., 26 1363-1370 (2008). [82] D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, 29 2941-2953 (2008). [83] A. Barba, A. Diez-Escudero, Y. Maazouz, K. Rappe, M. Espanol, E. B. Montufar, M. Bonany, J. M. Sadowska, J. Guillem-Marti, C. Öhman-Mägi, C. Persson, M. C. Manzanares, J. Franch and M. P. Ginebra, “Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture,” ACS Appl. Mater. Interfaces, 9 41722-41736 (2017). [84] Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata, N. Nagai, Y. Dohi and H. Ohgushi, “BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis,” J. Biomed. Mater. Res., 39 190-199 (1998). [85] S. M. Lien, L. Y. Ko and T. J. Huang, “Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering,” Acta Biomater., 5 670-679 (2009). [86] S. Parithimarkalaignan and T. V. Padmanabhan, “Osseointegration: an update,” J. Indian Prosthodont. Soc., 13 2-6 (2013). [87] S. F. Hulbert, F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert and F. H. Stelling, “Potential of ceramic materials as permanently implantable skeletal prostheses,” J. Biomed. Mater. Res., 4 433-456 (1970). [88] J. R. Woodard, A. J. Hilldore, S. K. Lan, C. J. Park, A. W. Morgan, J. A. C. Eurell, S. G. Clark, M. B. Wheeler, R. D. Jamison and A. J. W. Johnson, “The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity,” Biomaterials, 28 45-54 (2007). [89] M. Gutierres, M. A. Lopes, N. S. Hussain, A. F. Lemos, J. M. F. Ferreira, A. Afonso, A. T. Cabral, L. Almeida and J. D. Santos, “Bone ingrowth in macroporous Bonelike® for orthopaedic applications,” Acta Biomater., 4 370-377 (2008). [90] J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps and B. Thierry, “Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo,” J. Mater. Sci.-Mater. Med., 10 111-120 (1999). [91] M. Bohner and F. Baumgart, “Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes,” Biomaterials, 25 3569-3582 (2004). [92] J. S. Wang, M. Zhang, I. McCarthy, K. E. Tanner and L. Lidgren, “Biomechanics and bone integration on injectable calcium sulphate and hydroxyapatite in large bone defect in rat,” in 52nd Annual Meeting of the Orthopaedic Research Society, Chicago, USA, 0879 (2006). [93] CERAMENTTM|BONE VOID FILLER Bone healing technical monograph - PR 0278-01 EN, BoneSupport AB, Lund, Sweden. [94] J. S. Wang, M. Tägil, H. Isaksson, M. Boström and L. Lidgren, “Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle,” J. Orthop. Transl., 6 10-17 (2016). [95] X. Fan, H. Ren, X. Luo, P. Wang, G. Lv, H. Yuan, H. Li and Y. Yan, “Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair,” J. Biomater. Appl., 30 1261-1272 (2016). [96] X. Han, H. Liu, D. Wang, F. Su, Y. Zhang, W. Zhou, S. Li and R. Yang, “Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible,” Clin. Implant Dent. Relat. Res., 15 390-401 (2013). [97] L. Oezel, C. Büren, A. O. Scholz, J. Windolf and C. D. Windolf, “Effect of antibiotic infused calcium sulfate/hydroxyapatite (CAS/HA) insets on implant-associated osteitis in a femur fracture model in mice,” PLoS One, 14 e0213590 (2019). [98] J. C. Karr, J. Lauretta and G. Keriazes, “In vitro antimicrobial activity of calcium sulfate and hydroxyapatite (Cerament Bone Void Filler) discs using heat-sensitive and non-heat-sensitive antibiotics against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa,” J. Am. Podiatr. Med. Assoc., 101 146-152 (2011). [99] W. Hettwer, P. F. Horstmann, S. Bischoff, D. Güllmar, J. R. Reichenbach, P. S. P. Poh, M. van Griensven, F. Gras and M. Diefenbeck, “Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur,” APMIS, 127 53-63 (2019). [100] M. A. McNally, J. Y. Ferguson, A. C. K. Lau, M. Diefenbeck, M. Scarborough, A. J. Ramsden and B. L. Atkins, “Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: a prospective series of 100 cases,” Bone Joint J., 98B 1289-1296 (2016). [101] M. Stravinskas, M. Nilsson, A. Vitkauskiene, S. Tarasevicius and L. Lidgren, “Vancomycin elution from a biphasic ceramic bone substitute,” Bone Jt. Res., 8 49-54 (2019). [102] D. von Stechow and M. A. Rauschmann, “Effectiveness of combination use of antibiotic-loaded PerOssal® with spinal surgery in patients with spondylodiscitis,” Eur. Surg. Res., 43 298-305 (2009). [103] M. Rafter, M. Baker, M. Alves, J. Daniel and N. Remeikis, “Evaluation of healing with use of an internal matrix to repair furcation perforations,” Int. Endod. J., 35 775-783 (2002). [104] M. Nilsson, J. S. Wang, L. Wielanek, K. E. Tanner and L. Lidgren, “Biodegradation and biocompatibility of a calcium sulphate-hydroxyapatite bone substitute,” J. Bone Joint Surg.-Br. Vol., 86 120-125 (2004). [105] N. M. Hu, Z. Chen, X. Liu, H. Liu, X Lian, X. Wang and F. Z. Cui, “Mechanical properties and in vitro bioactivity of injectable and self-setting calcium sulfate/nano-HA/collagen bone graft substitute,” J. Mech. Behav. Biomed. Mater., 12 119-128 (2012). [106] S. Sato, T. Koshino and T. Saito, “Osteogenic response of rabbit tibia to hydroxyapatite particle-plaster of Paris mixture,” Biomaterials, 19 1895-1900 (1998). [107] S. T. Kuo, H. W. Wu and W. H. Tuan, “Resorbable calcium sulfates with tunable degradation rate,” J. Asian Ceram. Soc., 1 102-107 (2013). [108] K. Jono, M. Fuji and M. Takahashi, “Porous ceramics for building materials fabricated by in situ solidification method using natural polymer and waste resources,” J. Ceram. Soc. Jpn., 112 S138-S143 (2004). [109] Formulation of 14190 - DPBS, no calcium, no magnesium, Thermo Fisher Scientific, USA. Available: https://www.thermofisher.com/tw/zt/home/technical-resources/media-formulation.147.html. [110] H. C. Kuo, “Biodegradation Behavior of Calcium Sulfate/Bioactive Glass Composites,” M.S. thesis, National Taiwan University, Taipei, Taiwan (2015). [111] Cell Proliferation Kit Ⅰ (MTT), cat. no. 11 465 007 001, version 19, Roche, Germany (2016). [112] ISO 10993-12:2012(E), “Biological evaluation of medical devices ― Part 12: Sample preparation and reference materials”. [113] ISO 10993-5:2009(E), “Biological evaluation of medical devices ― Part 5: Tests for in vitro cytotoxicity”. [114] LIVE/DEAD® Viability/Cytotoxicity Kit *for mammalian cells*, MP 03224, Invitrogen, UK (2005). [115] P. Gao, H. Zhang, Y. Liu, B. Fan, X. Li, X. Xiao, P. Lan, M. Li, L. Geng, D. Liu, Y. Yuan, Q. Lian, J. Lu, Z. Guo and Z. Wang, “Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo,” Sci. Rep., 6 23367 (2016). [116] Y. Shen, W. Qian, C. Chung, I. Olsen and M. Haapasalo, “Evaluation of the effect of two chlorhexidine preparations on biofilm bacteria in vitro: a three-dimensional quantitative analysis,” J. Endod., 35 981-985 (2009). [117] F. G. Pappen, Y. Shen, W. Qian, M. R. Leonardo, L. Giardino and M. Haapasalo, “In vitro antibacterial action of Tetraclean, MTAD and five experimental irrigation solutions,” Int. Endod. J., 43 528-535 (2010). [118] L. J. Vandeperre, A. M. De Wilde and J. Luyten, “Gelatin gelcasting of ceramic components,” J. Mater. Process. Technol., 135 312-316 (2003). [119] K. K. Shaffer, J. P. Jaimes, M. K. Hordinsky, G. R. Zielke, and E. M. Warshaw, “Allergenicity and cross-reactivity of coconut oil derivatives: a double-blind randomized controlled pilot study,” Dermatitis, 17 71-76 (2006). [120] H. Jodati, B. Yilmaz and Z. Evis, “A review of bioceramic porous scaffolds for hard tissue applications: effects of structural features,” Ceram. Int., 46 15725-15739 (2020). [121] M. P. Chang, H. C. Hsu, W. H. Tuan and P. L. Lai, “A feasibility study regarding the potential use of silica-doped calcium sulfate anhydrite as a bone void filler,” J. Med. Biol. Eng., 37 879-886 (2017). [122] G. Yang, J. Liu, F. Li, Z. Pan, X. Ni, Y. Shen, H. Xu and Q. Huang, “Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications,” Mater. Sci. Eng. C-Mater. Biol. Appl., 35 70-76 (2014). [123] Z. Zhou, F. Buchanan, C. Mitchell and N. Dunne, “Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique,” Mater. Sci. Eng. C-Mater. Biol. Appl., 38 1-10 (2014). [124] S. T. Kuo, H. W. Wu, W. H. Tuan, Y. Y. Tsai, S. F. Wang and Y. Sakka, “Porous calcium sulfate ceramics with tunable degradation rate,” J. Mater. Sci.-Mater. Med., 23 2437-2443 (2012). [125] M. P. Chang, Y. C. Tsung, H. C. Hsu, W. H. Tuan and P. L. Lai, “Addition of a small amount of glass to improve the degradation behavior of calcium sulfate bioceramic,” Ceram. Int., 41 1155-1162 (2015). [126] M. P. Chang, “Strontium-doped calcium sulfate anhydrate as bone graft substitute,” Ph.D. dissertation, National Taiwan University, Taipei, Taiwan (2017). [127] C. Shen, “Gypsum Products,” in Phillips' Science of Dental Materials, K. J. Anusavice, C. Shen and H. R. Rawls, Ed., Amsterdam: Elsevier, 182-193 (2012). [128] E. Bock, “On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25 oC, 30 oC, 40 oC, and 50 oC,” Can. J. Chem., 39 1746-1751 (1961). [129] S. Borhan, S. Hesaraki and S. Ahmadzadeh-Asl, “Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement,” J. Mater. Sci.-Mater. Med., 21 3171-3181 (2010). [130] F. H. Lin, C. J. Liao, K. S. Chen, J. S. Sun and H. C. Liu, “Degradation behavior of a new bioceramic: Ca2P2O7 with addition of Na4P2O7‧10H2O,” Biomaterials, 18 915-921 (1997). [131] S. I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, R. Appleyard and H. Zreiqat, “The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites,” Biomaterials, 31 5498-5509 (2010). [132] M. Rajkumar, N. M. Sundaram and V. Rajendran, “Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature,” Dig. J. Nanomater. Biostruct., 6 169-179 (2011). [133] B. H. Yoon, H. W. Kim, S. H. Lee, C. J. Bae, Y. H. Koh, Y. M. Kong and H. E. Kim, “Stability and cellular responses to fluorapatite-collagen composites,” Biomaterials, 26 2957-2963 (2005). [134] S. Li, X. Pu, X. Chen, X. Liao, Z. Huang and G. Yin, “A novel bi-phase Sr-doped magnesium phosphate/calcium silicate composite scaffold and its osteogenesis promoting effect,” Ceram. Int., 44 16237-16245 (2018). [135] X. Lu and Y. Leng, “Theoretical analysis of calcium phosphate precipitation in simulated body fluid,” Biomaterials, 26 1097-1108 (2005). [136] C. Göbel, P. Simon, J. Buder, H. Tlatlik and R. Kniep, “Phase formation and morphology of calcium phosphate-gelatine-composites grown by double diffusion technique: the influence of fluoride,” J. Mater. Chem., 14 2225-2230 (2004). [137] K. Onuma and M. Iijima, “Nanoparticles in β-tricalcium phosphate substrate enhance modulation of structure and composition of an octacalcium phosphate grown layer,” Crystengcomm, 19 6660-6672 (2017). [138] S. Hiromoto and T. Yamazaki, “Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast,” Sci. Technol. Adv. Mater., 18 96-109 (2017). [139] W. E. Brown, N. Eidelman and B. Tomazic, “Octacalcium phosphate as a precursor in biomineral formation,” Adv. Dent. Res., 1 306-313 (1987). [140] A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. Part A, 65A 188-195 (2003). [141] A. F. Stewart, “Hypercalcemia associated with cancer,” N. Engl. J. Med., 352 373-379 (2005). [142] J. M. Sadowska, J. Guillem-Marti, M. Espanol, C. Stähli, N. Döbelin and M. P. Ginebra, “In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: a new strategy to assess the effect of ion exchange,” Acta Biomater., 76 319-332 (2018). [143] J. M. Sadowska, J. Guillem-Marti, E. B. Montufar, M. Espanol and M. P. Ginebra, “Biomimetic versus sintered calcium phosphates: the in vitro behavior of osteoblasts and mesenchymal stem cells,” Tissue Eng. Part A, 23 1297-1309 (2017). [144] S. Sony, S. S. Babu, K. V. Nishad, H. Varma and M. Komath, “Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate,” J. Mater. Sci.-Mater. Med., 26 31 (2015). [145] H. Wang, W. Zhi, X. Lu, X. Li, K. Duan, R. Duan, Y. Mu and J. Weng, “Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures,” Acta Biomater., 9 8413-8421 (2013). [146] E. Gibon, B. Batke, M. U. Jawad, K. Fritton, A. Rao, Z. Yao, S. Biswal, S. S. Gambhir and S. B. Goodman, “MC3T3-E1 osteoprogenitor cells systemically migrate to a bone defect and enhance bone healing,” Tissue Eng. Part A, 18 968-973 (2012). [147] K. Lin, L. Xia, H. Li, X. Jiang, H. Pan, Y. Xu, W. W. Lu, Z. Zhang and J. Chang, “Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics,” Biomaterials, 34 10028-10042 (2013). [148] G. A. Fielding, A. Bandyopadhyay and S. Bose, “Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds,” Dent. Mater., 28 113-122 (2012). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73271 | - |
dc.description.abstract | 硫酸鈣和氫氧基磷灰石因具備高生物相容性,多年來被廣泛應用於生物陶瓷領域中。由於兩種材料降解速率差異顯著,因此可將兩者混合製備出具較平穩降解速率的雙相骨替代材。本研究藉由膠體鑄造法成功製備出具穩定多孔結構的生物陶瓷骨替代材。多孔生物陶瓷樣品之孔隙率約在60-70 %之間,孔洞彼此連通且大於100微米。本研究所使用之氫氧基磷灰石是藉由固態反應法所合成。此外,硫酸鈣添加生物玻璃或氫氧基磷灰石並經過燒結熱處理後,可有效提升生物陶瓷試樣的機械強度,且沒有觀察到二次相的生成。從體外降解試驗的結果可以發現,雙相多孔試樣的降解速率可透過硫酸鈣的含量多寡來調整控制。當雙相試樣中的硫酸鈣比例較高時,初始降解速率會較快且降解行為持續的時間將延長。在降解過程中,含硫酸鈣之試樣會釋放鈣離子並與磷酸根離子進行反應生成磷酸鈣鹽類沉澱於樣品上。將MC3T3-E1細胞培養在試樣的萃取液中可以發現,其吸光值於所有樣品的萃取液中皆會隨著培養時間的增長而上升。另一方面,MC3T3-E1細胞也可以貼附,增殖並在整個多孔試樣內遷移且不具細胞毒性。將雙相多孔試樣植入老鼠大腿骨缺損部位三個月後,可以明顯觀察到新骨及血管組織生成。因此,藉由各項分析結果可以證明本研究所製備之雙相多孔試樣為一具實用性的人工合成骨替代材。 | zh_TW |
dc.description.abstract | Calcium sulfate and hydroxyapatite have both been used as bioceramics with biocompatibility for several years. Since the degradation rate are divergent, a bone graft substitute with moderated degradation rate could be generated by the combination of calcium sulfate and hydroxyapatite. In the present study, calcium sulfate has been added with 1 wt% of bioglass or mixed with hydroxyapatite prepared by solid-state reaction to produce the synthetic bone graft substitutes. According to the gel-casting method, the bone graft substitutes with stable porosity structure have been prepared after sintering without secondary phase presence. The porous structure shows concave macropores (> 100 μm) with interconnected tunnels; the porosity of specimens is about 60-70%. The mechanical strength could be improved by adding 1 wt% of bioglass or hydroxyapatite in calcium sulfate. The results of degradation experiment show that the degradation rate is controlled by the content of calcium sulfate; the starting degradation rate would be faster with higher calcium sulfate ratio in biphasic specimens, and the degradation behavior would perform longer. Calcium ion would release and react with phosphate ion to produce calcium phosphate precipitate on the specimens during degradation. The optical density value would increase during incubation of MC3T3-E1 cells within extracts of all specimens. MC3T3-E1 cells could also attach, proliferate and migrate through the open structure of the specimens. New bone formation and vascularization could be observed in the bone defect after implanted the biphasic specimens for 3 months. Therefore, a practical porous biphasic bone graft substitutes have been prepared successfully in the present study. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:25:43Z (GMT). No. of bitstreams: 1 U0001-1412202018360100.pdf: 10769437 bytes, checksum: 050169613b016534179134410bf8235b (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Bone tissue and bone graft substitutes engineering 3 2.1.1 Bone tissue 3 2.1.2 Bone remodeling process 6 2.1.3 Bone graft substitutes engineering 8 2.2 Applications of calcium sulfate 11 2.2.1 Physical and chemical properties of calcium sulfate 11 2.2.2 Bio-properties and clinical applications of calcium sulfate 14 2.3 Applications of calcium phosphate 16 2.3.1 Physical and chemical properties of calcium phosphate 16 2.3.2 Bio-properties and clinical applications of hydroxyapatite 20 2.4 Porous biphasic bone graft substitutes 22 2.4.1 Properties requirement for bone graft substitutes 22 2.4.2 Applications for biphasic bone graft substitutes 24 Chapter 3 Experimental procedures 27 3.1 Calcium sulfate with bioglass addition 27 3.1.1 Gel-casting procedure 27 3.1.2 28-day in vitro degradation experiment 29 3.1.3 In vivo experiment 31 3.1.4 Characterization 32 3.1.4.1 Density and porosity 32 3.1.4.2 Mechanical strength 32 3.1.4.3 Microstructure observation 32 3.1.4.4 Phase identification 32 3.2 Porous biphasic bone graft substitutes with calcium sulfate and hydroxyapatite 33 3.2.1 Synthesis of hydroxyapatite 33 3.2.2 Gel-casting procedure 34 3.2.3 10-week in vitro degradation experiment 34 3.2.4 Cell viability 35 3.2.5 Cell attachment 36 3.2.6 In vivo experiment 36 3.2.7 Characterization 37 3.2.7.1 Thermal analysis 37 3.2.7.2 Density and porosity 37 3.2.7.3 Mechanical strength 37 3.2.7.4 Microstructure observation 37 3.2.7.5 Phase identification 38 Chapter 4 Results 39 4.1 Calcium sulfate with bioglass addition 39 4.1.1 Microstructure design and observation 39 4.1.2 28-day in vitro degradation experiment results 41 4.1.3 In vivo experiment results 50 4.2 Porous biphasic bone graft substitutes with calcium sulfate and hydroxyapatite 52 4.2.1 Hydroxyapatite synthesis 52 4.2.2 Physical properties and phase identification 54 4.2.3 10-week in vitro degradation experiment results 58 4.2.4 Cell viability analysis by MTT assay 67 4.2.5 Cell attachment and migration 69 4.2.6 In vivo experiment results 73 Chapter 5 Discussion 78 5.1 Gel-casting procedures 78 5.2 Characterization of bone graft substitutes 80 5.2.1 Phase analysis 80 5.2.2 Mechanical strength 81 5.2.3 Microstructure investigation 84 5.2.3.1 Fracture surface 84 5.2.3.2 Porous structure 84 5.3 In vitro degradation analysis of bone graft substitutes 89 5.3.1 Degradation mechanisms 89 5.3.2 Degradation methods 90 5.3.3 Degradation rate 93 5.3.4 Phase of the precipitate 96 5.3.5 Solubility of specimens 105 5.4 Bio-properties of bone graft substitutes 106 5.4.1 Cell viability-MTT assay and cell attachment 106 5.4.2 In vivo experiment 109 Chapter 6 Conclusions 113 Chapter 7 Future works 115 7.1 Microstructure design 115 7.2 Different additives 115 7.3 Soaking solution 115 7.4 In vivo specimens 116 REFERENCES 118 | |
dc.language.iso | en | |
dc.title | 雙相多孔生物陶瓷骨替代材之物理及生物特性研究 | zh_TW |
dc.title | Physical and Biological Properties of Porous Biphasic Bone Graft Substitutes Made by Calcium Sulfate and Hydroxyapatite | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 賴伯亮(Po-Liang Lai),張麗冠(Li-Kwan Chang),陳三元(San-Yuan Chen),許沛衣(Pei-Yi Hsu) | |
dc.subject.keyword | 硫酸鈣,氫氧基磷灰石,多孔微結構,生物可降解,燒結, | zh_TW |
dc.subject.keyword | calcium sulfate,hydroxyapatite,porous structure,biodegradable,sintering, | en |
dc.relation.page | 133 | |
dc.identifier.doi | 10.6342/NTU202004421 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-12-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1412202018360100.pdf 目前未授權公開取用 | 10.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。