請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73130完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊維(Chun-Wei Chen) | |
| dc.contributor.author | Zhe-Yu Lee | en |
| dc.contributor.author | 李哲裕 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:18:51Z | - |
| dc.date.available | 2019-08-05 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-10 | |
| dc.identifier.citation | [1] Sawin, Janet L., and Freyr Sverrisson. 'Renewables 2012 global status report.' Paris: REN21 Secretariat REN21 (2014).
[2] Brimblecombe, Robin, et al. 'Molecular water-oxidation catalysts for photoelectrochemical cells.' Dalton Transactions 43 (2009): 9374-9384. [3] Fujishima, Akira, and Kenichi Honda. 'Electrochemical photolysis of water at a semiconductor electrode.' nature238.5358 (1972): 37. [4] Kudo, Akihiko, and Yugo Miseki. 'Heterogeneous photocatalyst materials for water splitting.' Chemical Society Reviews 38.1 (2009): 253-278. [5] Walter, Michael G., et al. 'Solar water splitting cells.' Chemical reviews 110.11 (2010): 6446-6473. [6] Hisatomi, Takashi, Jun Kubota, and Kazunari Domen. 'Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.' Chemical Society Reviews43.22 (2014): 7520-7535. [7] Yang, Jinhui, et al. 'A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes.' Nature materials 16.3 (2017): 335. [8] Novoselov, Kostya S., et al. 'Electric field effect in atomically thin carbon films.' science 306.5696 (2004): 666-669. [9] Young, Robert J., et al. 'The mechanics of graphene nanocomposites: a review.' Composites Science and Technology 72.12 (2012): 1459-1476. [10] Geim, Andre Konstantin. 'Graphene: status and prospects.' science 324.5934 (2009): 1530-1534. [11] Neto, AH Castro, et al. 'The electronic properties of graphene.' Reviews of modern physics 81.1 (2009): 109. [12] Geim, Andre K., and Konstantin S. Novoselov. 'The rise of graphene.' Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2010. 11-19. [13] Nair, Rahul Raveendran, et al. 'Fine structure constant defines visual transparency of graphene.' Science 320.5881 (2008): 1308-1308. [14] Lee, Changgu, et al. 'Measurement of the elastic properties and intrinsic strength of monolayer graphene.' science 321.5887 (2008): 385-388. [15] Balandin, Alexander A., et al. 'Superior thermal conductivity of single-layer graphene.' Nano letters 8.3 (2008): 902-907. [16] Malik, O. L. E. K. S. A. N. D. R., C. Zúñiga, and G. Ruiz-T. 'Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives.' Journal of Non-Crystalline Solids 354.19-25 (2008): 2472-2477. [17] Zhang, Yunfang, et al. 'Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells.' Advanced Energy Materials 4.2 (2014): 1300923. [18] Yu, H. A., et al. 'Photovoltaic cell of carbonaceous film/n‐type silicon.' Applied physics letters 68.4 (1996): 547-549. [19] Jia, Yi, et al. 'Nanotube–silicon heterojunction solar cells.' Advanced Materials 20.23 (2008): 4594-4598. [20] Jia, Yi, et al. 'Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping.' Nano letters 11.5 (2011): 1901-1905. [21] Li, Xinming, et al. 'Graphene‐on‐silicon Schottky junction solar cells.' Advanced materials 22.25 (2010): 2743-2748. [22] Huang, L., et al. 'Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition.' Carbon50.2 (2012): 551-556. [23] Shi, Yumeng, et al. 'Work function engineering of graphene electrode via chemical doping.' ACS nano 4.5 (2010): 2689-2694. [24] Xie, Chao, et al. 'Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells.' Journal of Materials Chemistry A 1.30 (2013): 8567-8574. [25] Shi, Enzheng, et al. 'Colloidal antireflection coating improves graphene–silicon solar cells.' Nano letters 13.4 (2013): 1776-1781. [26] Kennedy, John H., and Karl W. Frese. 'Photooxidation of water at α‐Fe2 O 3 electrodes.' Journal of the Electrochemical Society125.5 (1978): 709-714. [27] Su, Jinzhan, et al. 'Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting.' Nano letters 11.5 (2011): 1928-1933. [28] Sivula, Kevin, Florian Le Formal, and Michael Gratzel. 'WO3− Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach.' Chemistry of Materials 21.13 (2009): 2862-2867. [29] Bolts, Jeffrey M., and Mark S. Wrighton. 'Correlation of photocurrent-voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water.' The Journal of Physical Chemistry 80.24 (1976): 2641-2645. [30] Liu, Chong, Neil P. Dasgupta, and Peidong Yang. 'Semiconductor nanowires for artificial photosynthesis.' Chemistry of Materials 26.1 (2013): 415-422. [31] Offereins, H. L., K. Kühl, and H. Sandmaier. 'Methods for the fabrication of convex corners in anisotropic etching of (100) silicon in aqueous KOH.' Sensors and Actuators A: Physical25.1-3 (1990): 9-13. [32] Xia, Zhaoming, et al. 'Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation.' Science bulletin 60.16 (2015): 1395-1402. [33] Chen, Yi Wei, et al. 'Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation.' Nature materials 10.7 (2011): 539. [34] Scheuermann, Andrew G., et al. 'Effects of catalyst material and atomic layer deposited TiO 2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes.' Energy & Environmental Science 6.8 (2013): 2487-2496. [35] Hu, Shu, et al. 'Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.' Science344.6187 (2014): 1005-1009. [36] McDowell, Matthew T., et al. 'The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation.' ACS applied materials & interfaces 7.28 (2015): 15189-15199. [37] Scheuermann, Andrew G., et al. 'Titanium oxide crystallization and interface defect passivation for high performance insulator-protected schottky junction MIS photoanodes.' ACS applied materials & interfaces 8.23 (2016): 14596-14603. [38] Cai, Qian, et al. 'Impact of silicon resistivity on the performance of silicon photoanode for efficient water oxidation reaction.' ACS Catalysis 7.5 (2017): 3277-3283. [39] Yu, Yanhao, et al. 'Enhanced photoelectrochemical efficiency and stability using a conformal TiO 2 film on a black silicon photoanode.' Nature Energy 2.6 (2017): 17045. [40] Hong, Wenting, et al. 'High-performance silicon photoanode enhanced by gold nanoparticles for efficient water oxidation.' ACS applied materials & interfaces 10.7 (2018): 6262-6268. [41] Licht, S., et al. 'Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis.' The Journal of Physical Chemistry B 104.38 (2000): 8920-8924. [42] Mei, Bastian, et al. 'Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrO x thin films.' The journal of physical chemistry letters 5.11 (2014): 1948-1952. [43] Jun, Kimin, et al. 'High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation.' Angewandte Chemie International Edition 51.2 (2012): 423-427. [44] Sun, Ke, et al. 'Nickel oxide functionalized silicon for efficient photo-oxidation of water.' Energy & Environmental Science 5.7 (2012): 7872-7877. [45] Strandwitz, Nicholas C., et al. 'Photoelectrochemical behavior of n-type Si (100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition.' The Journal of Physical Chemistry C 117.10 (2013): 4931-4936. [46] Kenney, Michael J., et al. 'High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation.' Science 342.6160 (2013): 836-840. [47] Sun, Ke, et al. 'Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation.' Nano letters 13.5 (2013): 2064-2072. [48] Hill, James C., Alan T. Landers, and Jay A. Switzer. 'An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation.' Nature materials 14.11 (2015): 1150. [49] Tung, R. T. 'Electron transport at metal-semiconductor interfaces: General theory.' Physical Review B 45.23 (1992): 13509. [50] Nakato, Yoshihiro, et al. 'Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion.' The Journal of Physical Chemistry 92.8 (1988): 2316-2324. [51] Rossi, Robert C., and Nathan S. Lewis. 'Investigation of the size-scaling behavior of spatially nonuniform barrier height contacts to semiconductor surfaces using ordered nanometer-scale nickel arrays on silicon electrodes.' The Journal of Physical Chemistry B 105.49 (2001): 12303-12318. [52] Nellist, Michael R., et al. 'Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting.' Accounts of chemical research 49.4 (2016): 733-740. [53] Laskowski, Forrest AL, et al. 'Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry.' Energy & Environmental Science 10.2 (2017): 570-579. [54] Zhou, Xinghao, et al. '570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition.' Energy & Environmental Science 9.3 (2016): 892-897. [55] Reiss, Howard. 'Photocharacteristics for Electrolyte‐Semiconductor Junctions.' Journal of The Electrochemical Society 125.6 (1978): 937-949. [56] Smith, Wilson A., et al. 'Interfacial band-edge energetics for solar fuels production.' Energy & Environmental Science 8.10 (2015): 2851-2862. [57] Zhou, Xinghao, et al. 'Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide.' Energy & Environmental Science 8.9 (2015): 2644-2649. [58] Connelly, Daniel, et al. 'Fermi-level depinning for low-barrier Schottky source/drain transistors.' Applied physics letters 88.1 (2006): 012105. [59] Mönch, Winfried. 'On the alleviation of Fermi-level pinning by ultrathin insulator layers in Schottky contacts.' Journal of Applied Physics 111.7 (2012): 073706. [60] Agrawal, Ashish, et al. 'Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts.' Applied Physics Letters 104.11 (2014): 112101. [61] Digdaya, Ibadillah A., et al. 'Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation.' Nature communications 8 (2017): 15968. [62] Li, Shengyang, et al. 'Enhancing the Photovoltage of Ni/n-Si Photoanode for Water Oxidation through a Rapid Thermal Process.' ACS applied materials & interfaces 10.10 (2018): 8594-8598. [63] Yu, Young-Jun, et al. 'Tuning the graphene work function by electric field effect.' Nano letters 9.10 (2009): 3430-3434. [64] Schedin, F., et al. 'Detection of individual gas molecules adsorbed on graphene.' Nature materials 6.9 (2007): 652. [65] Panchakarla, L. S., et al. 'Synthesis, structure, and properties of boron‐and nitrogen‐doped graphene.' Advanced Materials 21.46 (2009): 4726-4730. [66] Wei, Dacheng, et al. 'Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties.' Nano letters 9.5 (2009): 1752-1758. [67] Guo, Beidou, et al. 'Controllable N-doping of graphene.' Nano letters 10.12 (2010): 4975-4980. [68] Jung, Naeyoung, et al. 'Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation.' Nano letters 9.12 (2009): 4133-4137. [69] Kasry, Amal, et al. 'Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes.' ACS nano 4.7 (2010): 3839-3844. [70] Kim, Ki Kang, et al. 'Enhancing the conductivity of transparent graphene films via doping.' Nanotechnology 21.28 (2010): 285205. [71] Shi, Yumeng, et al. 'Work function engineering of graphene electrode via chemical doping.' ACS nano 4.5 (2010): 2689-2694. [72] Tongay, Sefaattin, et al. 'Stable hole doping of graphene for low electrical resistance and high optical transparency.' Nanotechnology 22.42 (2011): 425701. [73] Chen, Wei, et al. 'Surface transfer p-type doping of epitaxial graphene.' Journal of the American Chemical Society 129.34 (2007): 10418-10422. [74] Farmer, Damon B., et al. 'Chemical doping and electron− hole conduction asymmetry in graphene devices.' Nano letters 9.1 (2008): 388-392. [75] Ho, Po-Hsun, et al. 'Self-encapsulated doping of n-type graphene transistors with extended air stability.' ACS nano 6.7 (2012): 6215-6221. [76] Li, Xuesong, et al. 'Large-area synthesis of high-quality and uniform graphene films on copper foils.' science 324.5932 (2009): 1312-1314. [77] Contolini, Robert J., Anthony F. Bernhardt, and Steven T. Mayer. 'Electrochemical planarization for multilevel metallization.' Journal of The Electrochemical Society 141.9 (1994): 2503-2510. [78] Luo, Zhengtang, et al. 'Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure.' Chemistry of Materials 23.6 (2011): 1441-1447. [79] Liang, Xuelei, et al. 'Toward clean and crackless transfer of graphene.' ACS nano 5.11 (2011): 9144-9153. [80] Li, Xuesong, et al. 'Transfer of large-area graphene films for high-performance transparent conductive electrodes.' Nano letters 9.12 (2009): 4359-4363. [81] Ferrari, Andrea C., et al. 'Raman spectrum of graphene and graphene layers.' Physical review letters 97.18 (2006): 187401. [82] Das, Anindya, et al. 'Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.' Nature nanotechnology 3.4 (2008): 210. [83] Zhao, Jiheng, et al. 'Stabilizing silicon photocathodes by solution-deposited Ni–Fe layered double hydroxide for efficient hydrogen evolution in alkaline media.' ACS Energy Letters 2.9 (2017): 1939-1946. [84] Ho, Po‐Hsun, et al. 'Self‐crack‐filled graphene films by metallic nanoparticles for high‐performance graphene heterojunction solar cells.' Advanced Materials 27.10 (2015): 1724-1729. [85] Giovannetti, G. A. K. P. A., et al. 'Doping graphene with metal contacts.' Physical review letters 101.2 (2008): 026803. [86] Qu, Liangti, Liming Dai, and Eiji Osawa. 'Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes.' Journal of the American Chemical Society128.16 (2006): 5523-5532. [87] Haque, Farjana, et al. 'Two-dimensional transition metal oxide and chalcogenide-based photocatalysts.' Nano-micro letters10.2 (2018): 23. [88] Yan, Ya, et al. 'Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution.' ACS applied materials & interfaces 5.24 (2013): 12794-12798. [89] Ding, Qi, et al. 'Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.' Journal of the American Chemical Society136.24 (2014): 8504-8507. [90] Yang, Min-Quan, Chuang Han, and Yi-Jun Xu. 'Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene–CdS–MoS2 composites.' The Journal of Physical Chemistry C 119.49 (2015): 27234-27246. [91] He, Jie, et al. 'CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution.' ChemSusChem 9.6 (2016): 624-630. [92] Bhanu, Udai, et al. 'Photoluminescence quenching in gold-MoS 2 hybrid nanoflakes.' Scientific reports 4 (2014): 5575. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73130 | - |
| dc.description.abstract | 能源危機及急遽成長的能源需求迫使人類尋求替代能源來取代目前主要依賴的化石燃料,在近幾年發展的新能源中,結合電化學水分解及太陽能的光電化學水分解可直接將太陽能轉換為容易儲存之化學能,具有可再生性、對環境無害以及永續利用的特性,使其成為極具潛力的新興能源並吸引許多科學家投入研究。另一方面,自從2004年首次發現單原子層石墨烯之存在後,其特殊的物理及化學性質,二維材料成為近十年最熱門的研究材料之一,因此,本研究將首次利用二維材料結合矽基板於光電化學水分解之光陽極,致力於提升產氧之效率。
在此研究中,分為石墨烯及二硫化鉬兩種二維材料和矽基板形成之異質接面在光電化學水分解產氧的效率表現。第一部分為Si-Gr-Ni光陽極,利用傳統PMMA石墨烯轉印法將化學氣相沈積法成長之石墨烯轉印於n-type矽基板上,於介面形成石墨烯與矽之蕭基接面,再利用熱蒸鍍法將鎳金屬薄膜沈積於石墨烯表面。與Si-Ni 結構比較,從線性掃描伏安法(LSV)可觀察Si-Gr-Ni結構的效率提升,並從電化學阻抗分析(EIS)結果中證明了載子轉移電阻的降低。為了更加提升效率,利用鉑金屬奈米粒子參雜得到p-type石墨烯,p-type 石墨烯與n-type矽基板形成能障較大之蕭基接面,可有效降低載子覆合機率,從線性掃描伏安法(LSV)可觀察到明顯的效率提升,並且利用Mott-Schottky plot觀察到較強的內建電場。 第二部分則利用二硫化鉬與n-type矽之異質接面於產氧的效率提升,因其特殊的能帶彎曲,Si-MoS_2-Ni光陽極具有極佳的產氧效率,並且從線性掃描伏安法(LSV)中可觀察到兩種載子傳遞路徑,與能帶彎曲的結果一致,二硫化鉬的載子覆合機率也因此能帶彎曲結構被抑制,從PL與TRPL的結果可得到證實。 本實驗展示了二維材料與矽之異質接面於光電化學水分解效率提升之可行性,此外,石墨烯與二硫化鉬尚有許多改質的方法可調控其物理性質,如功函數、費米能階及導電性等,因此其未來發展值得期待。 | zh_TW |
| dc.description.abstract | Developing the alternative energy is imperative due to the energy crisis and exponential growth of energy demand in the decades. Among new energy sources, photoelectrochemical (PEC) water splitting into hydrogen and oxygen, which is renewable, environment-friendly, and sustainable, has been seen as one of the most promising way to solve the challenge. In addition, two dimensional materials also attract a lot of attention of scientists all over the world due to their peculiar physical properties since the first discovery of mechanically exfoliated graphene in 2004. In this study, application of 2D material-silicon heterojunction has been first time applied to the PEC water splitting for oxygen evolution reaction.
Herein, 2D materials, graphene and MoS_2, coupled with n-type silicon have been used as water splitting photoanode for oxygen evolution reaction (OER). In the first part, graphene-silicon Schottky junction photoanode is synthesized by conventional PMMA graphene transfer method and thermal evaporation of nickel thin film. Compared to the Si-Ni structure, the Si-Gr-Ni photoanode shows enhanced OER efficiency from linear sweep voltammetry (LSV) measurement and reduced charge transfer resistance from electrochemical impedance microscopy(EIS). To further improve it, metallic p-type doping is adopted to tune the work function of graphene and the enhanced built-in potential is demonstrated by the Mott-Schottky plot. In the second part, Si-MoS_2-Ni photoanode is synthesized also by PMMA transfer method and thermal evaporation. Due to the special band bending in the photoanode, two carrier transporting paths have been observed from the LSV measurement and the reduced charge recombination of MoS_2-Si heterojunction, compared to pure MoS_2, has been proved by quenching of PL and longer life time of TRPL. Most importantly, the OER efficiency of Si-MoS_2-Ni photoanode is comparable to those in the literatures. In brief, the application of graphene and MoS_2 in this study has provided a 2D material-silicon heterojunction paradigm for PEC water splitting photoanode. Many modification strategies are worth expecting to optimize the efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:18:51Z (GMT). No. of bitstreams: 1 ntu-108-R06527046-1.pdf: 6279704 bytes, checksum: bab28f22f5379d351394337edda128da (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Photoelectrochemical (PEC) Water Splitting 1 1.1.1 Significance of PEC water splitting 1 1.1.2 Mechanism of PEC water splitting 3 1.2 Graphene 7 1.2.1 History and structure of graphene 7 1.2.2 Properties of graphene 8 1.3 Schottky Junction 11 1.3.1 Fundamental theory 11 1.3.2 Schottky junction solar cell 14 Chapter 2 Literature Review 17 2.1 Silicon Schottky Junction Solar Cell 17 2.1.1 Indium tin oxide 17 2.1.2 Organic polymer 17 2.1.3 Carbon-based materials 18 2.2 Silicon-Based Water Splitting Photoanode 21 2.2.1 History of water splitting photoanode 21 2.2.2 TiO2-protected water splitting photoanode 23 2.2.3 Catalyst-protected water splitting photoanode 27 2.2.4 Interfacial engineering of photoanode 32 2.2.5 List of photoanodes in literatures 35 2.3 Chemical Doping of Graphene 36 2.3.1 Substitute doping 36 2.3.2 Surface transfer doping 37 2.4 Motivation 39 Chapter 3 Method 40 3.1 Graphene Growth and Transfer 40 3.1.1 Chemical vapor deposition (CVD) graphene 40 3.1.2 PMMA graphene transfer method 42 3.2 Material Characterization and Analysis 45 3.2.1 Raman spectroscopy 45 3.2.2 Atomic force microscope (AFM) 47 3.2.3 Scanning electron microscope (SEM) 49 3.2.4 Auger electron spectroscopy (AES) 50 3.3 Photoelectrochemical Measurement 52 3.3.1 Simulated sun light: air mass 1.5 G 52 3.3.2 Three-electrode electrochemical cell 53 3.3.3 Linear sweep voltammetry 55 3.3.4 Chronoamperometry/Chronopotentiometry 56 3.3.5 Electrochemical impedance microscopy (EIS) 57 3.3.6 Mott-Schottky Plot 58 Chapter 4 Si-Gr Schottky Junction Photoanode 60 4.1 The Role of Si-Gr Schottky Junction in OER 60 4.2 Si-1Gr-20nmNi Water Splitting Photoanode 65 4.3 P-type Doping by Pt Particles for Enhancing Schottky Barrier 69 4.3.1 Pt particle deposition by H2PtCl6 solution 69 4.3.2 PEC performance of Si-Gr/Pt-20nmNi photoanode 73 4.4 Summary 78 Chapter 5 Si-MoS2Heterojunction Photoanode 79 5.1 Introduction of MoS2 79 5.2 Si-MoS2 Heterojunction Water Splitting Photoanode 82 5.2.1 Characterization of continuous MoS2 82 5.2.2 Photoelectrochemical performance of Si-MoS2 photoanode 83 5.3 Si-MoS2-4nmNi Water Splitting Photoanode 86 5.3.1 PEC performance of Si-MoS2-4nmNi 86 5.3.2 Carrier transporting paths of Si-MoS2-4nmNi 88 5.4 Comparison to Literatures 91 5.5 Summary 92 Chapter 6 Future Prospects 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 產氧反應 | zh_TW |
| dc.subject | 水分解 | zh_TW |
| dc.subject | 光電化學 | zh_TW |
| dc.subject | 蕭基接面 | zh_TW |
| dc.subject | Photoelectrochemical(PEC) | en |
| dc.subject | Water splitting | en |
| dc.subject | Oxygen evolution reaction(OER) | en |
| dc.subject | Graphene | en |
| dc.subject | MoS2 | en |
| dc.subject | Schottky junction | en |
| dc.title | 二維材料與矽之異質接面於提升光電化學產氧效率之應用 | zh_TW |
| dc.title | Enhanced Photoelectrochemical Efficiency by 2D Material-Silicon Heterojunction for Oxygen Evolution Reaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王迪彥(Di-Yan Wang),羅志偉(Chih-Wei Luo) | |
| dc.subject.keyword | 光電化學,水分解,產氧反應,石墨烯,二硫化鉬,蕭基接面, | zh_TW |
| dc.subject.keyword | Photoelectrochemical(PEC),Water splitting,Oxygen evolution reaction(OER),Graphene,MoS2,Schottky junction, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201901106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
