Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷
dc.contributor.authorJames Shyan-Tau Wuen
dc.contributor.author吳賢韜zh_TW
dc.date.accessioned2021-06-17T07:10:46Z-
dc.date.available2019-07-24
dc.date.copyright2019-07-24
dc.date.issued2019
dc.date.submitted2019-07-22
dc.identifier.citationAlt, J., Ryan, M., & Onstad, D. W. 2019. Geographic distribution and intrabiotypic variability of four soybean aphid biotypes. Crop Science, 59(1), 84–91.
Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., Ruiz, D., Herzog, S. K. and Martinez, R. 2011. Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 1–19.
Antiqueira, P. A. P., Petchey, O. L., & Romero, G. Q. 2018. Warming and top predator loss drive ecosystem multifunctionality. Ecology Letters, 21(1), 72–82.
Bhagsari, A. S., & Brown, R. H. 1986. Leaf Photosynthesis and its correlation with leaf area 1. Crop Science, 26(1), 127–132.
Barton, B. T., & Ives, A. R. 2014. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology, 95(6), 1479–1484.
Bel, Y., Sheets, J. J., Tan, S. Y., Narva, K. E., & Escriche, B. 2017. Toxicity and binding studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A proteins in the soybean pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Applied and Environmental Microbiology, 83(11), e00326-17.
Billick, I., Hammer, S., Reithel, J. S., & Abbot, P. 2007. Ant-aphid interactions: Are ants friends, enemies, or both?. Annals of the Entomological Society of America, 100(6), 887–892.
Bjorkman, C., & Niemela, P. (Eds.). 2015. Climate change and insect pests (Vol. 8). CABI.
Blanchard, S., Lognay, G., Verheggen, F., & Detrain, C. 2019. Today and tomorrow: Impact of climate change on aphid biology and potential consequences on their mutualism with ants. Physiological Entomology, 44, 77–86
Boldt, P. E., Biever, K. D., & Ignoffo, C. M. 1975. Lepidopteran pests of soybeans: consumption of soybean foliage and pods and development time. Journal of Economic Entomology, 68(4), 480–482.
Breton, L. M., & Addicott, J. F. 1992. Density‐dependent mutualism in an aphid‐ant interaction. Ecology, 73(6), 2175–2180.
Calixto, E. S., Lange, D., & Del-Claro, K. 2015. Foliar anti-herbivore defenses in Qualea multiflora Mart.(Vochysiaceae): Changing strategy according to leaf development. Flora-Morphology, Distribution, Functional Ecology of Plants, 212, 19–23.
Clark, R. E., & Singer, M. S. 2018. Keystone mutualism strengthens top–down effects by recruiting large-bodied ants. Oecologia, 186(3), 601–610.
Canedo‐Júnior, E. O., Santiago, G. S., Ribas, C. R., Zurlo, L. F., Cuissi, R. G., Souza, B., Faria, L. D. B., Rabello, A. M., Braga, D. D. L. and Silva, E. 2018. The effect size of aphid‐tending ants in an agricultural tri‐trophic system. Journal of Applied Entomology, 142(3), 349–358.
Corwith, H. L., & Wheeler, P. A. 2002. El Nino related variations in nutrient and chlorophyll distributions off Oregon. Progress in Oceanography, 54(1-4), 361–380.
Del Toro, I., Ribbons, R. R., & Ellison, A. M. 2015. Ant‐mediated ecosystem functions on a warmer planet: effects on soil movement, decomposition and nutrient cycling. Journal of Animal Ecology, 84(5), 1233–1241.
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H.M., Alves-Silva, E., Fagundes, R., Lange, D., Dáttilo, W., Vilela, A.A., Aguirre, A. and Rodriguez-Morales, D. 2016. Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Sociaux, 63(2), 207–221.
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. 2018. Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919.
Diffenbaugh, N. S., Krupke, C. H., White, M. A., & Alexander, C. E. 2008. Global warming presents new challenges for maize pest management. Environmental Research Letters, 3(4), 044007.
Dillon, M. E., Wang, G., & Huey, R. B. 2010. Global metabolic impacts of recent climate warming. Nature, 467(7316), 704.
Doremus, M. R., Smith, A. H., Kim, K. L., Holder, A. J., Russell, J. A., & Oliver, K. M. 2018. Breakdown of a defensive symbiosis, but not endogenous defences, at elevated temperatures. Molecular ecology, 27(8), 2138–2151.
Flatt, T., & Weisser, W. W. 2000. The effects of mutualistic ants on aphid life history traits. Ecology, 81(12), 3522–3529.
Guenat, S., Kaartinen, R., & Jonsson, M. 2019. Shade trees decrease pest abundances on brassica crops in Kenya. Agroforestry Systems, 93(2), 641–652.
Hanna, C., Naughton, I., Boser, C., Alarcón, R., Hung, K. L. J., & Holway, D. 2015. Floral visitation by the Argentine ant reduces bee visitation and plant seed set. Ecology, 96(1), 222–230.
Heil, M., & McKey, D. 2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics, 34(1), 425–553.
Hodek, I., & Michaud, J. P. 2013. Why is Coccinella septempunctata so successful? (A point-of-view). EJE, 105(1), 1–12.
Hullé, M., d’Acier, A. C., Bankhead-Dronnet, S., & Harrington, R. 2010. Aphids in the face of global changes. Comptes Rendus Biologies, 333(6-7), 497–503.
Joseph, G. S., Mauda, E. V., Seymour, C. L., Munyai, T. C., Dippenaar-Schoeman, A., & Foord, S. H. 2018. Landuse change in savannas disproportionately reduces functional diversity of invertebrate predators at the highest trophic levels: spiders as an example. Ecosystems, 21(5), 930–942.
Ke, P. J., & Nakazawa, T. 2018. Ontogenetic antagonism–mutualism coupling: perspectives on resilience of stage‐structured communities. Oikos, 127(3), 353–363.
Leal, I. R., Wirth, R., & Tabarelli, M. 2014. The multiple impacts of leaf‐cutting ants and their novel ecological role in human‐modified neotropical forests. Biotropica, 46(5), 516–528.
LeVan, K. E., & Holway, D. A. 2015. Ant–aphid interactions increase ant floral visitation and reduce plant reproduction via decreased pollinator visitation. Ecology, 96(6), 1620–1630.
Liere, H., Kim, T. N., Werling, B. P., Meehan, T. D., Landis, D. A., & Gratton, C. 2015. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Ecological Applications, 25(3), 652–661.
Lord, J. P., Barry, J. P., & Graves, D. 2017. Impact of climate change on direct and indirect species interactions. Marine Ecology Progress Series, 571, 1–11.
Mariotte, P., Mehrabi, Z., Bezemer, T. M., De Deyn, G. B., Kulmatiski, A., Drigo, B., Veen, G. C., Van der Heijden, M. G. and Kardol, P. 2018. Plant–soil feedback: bridging natural and agricultural sciences. Trends in Ecology & Evolution, 33(2), 129–142.
Mooney, K. A., & Agrawal, A. A. 2008. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense. The American Naturalist, 171(6), E195–E205.
Mooney, E. H., Phillips, J. S., Tillberg, C. V., Sandrow, C., Nelson, A. S., & Mooney, K. A. 2016. Abiotic mediation of a mutualism drives herbivore abundance. Ecology letters, 19(1), 37–44.
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., & Bugmann, H. 2018. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific reports, 8(1), 5627.
Murrell, E. G., & Barton, B. T. 2017. Warming alters prey density and biological control in conventional and organic agricultural systems. Integrative and Comparative Biology, 57(1), 1–13.
Nielsen, C., Agrawal, A. A., & Hajek, A. E. 2009. Ants defend aphids against lethal disease. Biology letters, 6(2), 205–208.
Nielsen, J. S., Nielsen, M. G., & Offenberg, J. 2018. Experiences in Transplanting Wood Ants into Plantations for Integrated Pest Management. Sociobiology, 65(3), 403–414.
Novgorodova, T. A., & Kryukov, V. Y. 2017. Quarantining behaviour of ants towards infected aphids as an antifungal mechanism in ant–aphid interactions. Entomologia Experimentalis et Applicata, 162(3), 293–301.
Offenberg, J. 2015. Ants as tools in sustainable agriculture. Journal of Applied Ecology, 52(5), 1197–1205.
Paul, E. A. 2014. Soil microbiology, ecology and biochemistry. Academic press.
Pedersen, P., Kumudini, S., Board, J., & Conley, S. 2004. Soybean growth and development. Ames, IA: Iowa State University, University Extension.
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569(7754), 108.
Pringle, E. G., Novo, A., Ableson, I., Barbehenn, R. V., & Vannette, R. L. 2014. Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants. Ecology and evolution, 4(21), 4065–4079.
Qian, S. S., & Shen, Z. 2007. Ecological applications of multilevel analysis of variance. Ecology, 88(10), 2489–2495.
Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Guimarães, P. R., & Holland, J. N. 2012. Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod-Plant Interactions, 6(2), 2892–95.
Riddick, E. 2017. Identification of conditions for successful aphid control by ladybirds in greenhouses. Insects, 8(2), 38.
Rogers, S. G. 1998. Biotechnology and the soybean. The American journal of clinical nutrition, 68(6), 1330S–1332S.
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M., Khabarov, N. and Neumann, K. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268–3273.
Ruane, A. C., Antle, J., Elliott, J., Folberth, C., Hoogenboom, G., Croz, D. M. D., Müller, C., Porter, C., Phillips, M. M., Raymundo, R. M. and Sands, R., 2018. Biophysical and economic implications for agriculture of+ 1.5 and+ 2.0 C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 76(1), 17–39.
Simon, J. C., & Peccoud, J. 2018. Rapid evolution of aphid pests in agricultural environments. Current Opinion in Insect Science, 26, 17–24.
Singh, A., Zytynska, S. E., Hanna, R., & Weisser, W. W. 2016. Ant attendance of the cotton aphid is beneficial for okra plants: deciphering multitrophic interactions. Agricultural and Forest Entomology, 18(3), 270–279.
Stadler, B., & Dixon, A. F. 2005. Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution, and Systematics, 36, 345–372.
Tena, A., Hoddle, C. D., & Hoddle, M. S. 2013. Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bulletin of Entomological Research, 103(6), 714–723.
Thurman, J. M., Northfield, T. D., & Snyder, W. E. 2019. Weaver ants provide ecosystem services to tropical tree crops. Frontiers in Ecology and Evolution, 7, 120.
Vantaux, A., Schillewaert, S., Parmentier, T., Van Den Ende, W. I. M., Billen, J., & Wenseleers, T. O. M. 2015. The cost of ant attendance and melezitose secretion in the black bean aphid Aphis fabae. Ecological Entomology, 40(5), 511–517.
Valenzuela, I., & Hoffmann, A. A. 2015. Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology, 54(3), 292–305.
Weissburg, M., & Draper, A. M. 2019. Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: A Review and Synthesis. Frontiers in Ecology and Evolution, 7, 72.
Wetterer, J. K. 2011. Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecological News, 14(1), 21–35.
Whitney, K. S., Meehan, T. D., Kucharik, C. J., Zhu, J., Townsend, P. A., Hamilton, K., & Gratton, C. 2016. Explicit modeling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance. Ecological applications, 26(8), 2600–2610.
Zhang, L., Zhu, L., Yu, M., & Zhong, M. 2016. Warming decreases photosynthates and yield of soybean [Glycine max (L.) Merrill] in the North China Plain. The Crop Journal, 4(2), 139–146.
Zhou, A., Qu, X., Shan, L., & Wang, X. 2017. Temperature warming strengthens the mutualism between ghost ants and invasive mealybugs. Scientific Reports, 7(1), 959.
Züst, T., & Agrawal, A. A. 2017. Plant chemical defense indirectly mediates aphid performance via interactions with tending ants. Ecology, 98(3), 601–607.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72931-
dc.description.abstract氣候暖化可改變生物的交互作用,進而對農業活動產生深遠的影響。在農業系統中,生物的交互作用常跨越植物、植食者、與掠食者等三營養階層系統(tri-trophic system)。然而,這些系統往往因為螞蟻(具多種生態角色)的出現而變得更複雜。螞蟻一方面對農業有某些益處,然而另一方面又可能促進一些農業害蟲的生長,例如蚜蟲。值得一提的是,螞蟻和蚜蟲的關係雖然一般被歸類為互利共生(mutualism),但是兩者的關係其實從互利共生到利用(exploitation)都有,而且受到很多生物和非生物因子的影響。由於螞蟻對植食性昆蟲(蚜蟲) 影響很大,螞蟻引起的交互作用有可能會產生營養瀑布(trophic cascade),進而影響到植物(包括農業作物)。由於這些生物交互作用的重要性,許多研究已探討螞蟻與蚜蟲的交互作用(ant–aphid interactions)和螞蟻與植物的營養瀑布(ant–plant cascades)。然而,目前還不清楚螞蟻密度如何影響螞蟻與蚜蟲的交互作用、螞蟻與植物的營養瀑布,及氣候暖化如何影響以上的交互作用。為了回答這些問題,本研究探討 1) 螞蟻密度對螞蟻與蚜蟲交互作用(蚜蟲數量)的影響,2) 螞蟻密度對作用在植物上的營養瀑布之影響(如植物生長、防禦、生殖表現),3) 溫度上升對以上交互作用的影響。我們設計了一個有著附加螞蟻的三階層系統(大豆、蚜蟲、瓢蟲),並進行了一個3x3複因子的實驗,包括三種溫度處理(控制組、+ 3°C、+ 6°C)和三種螞蟻密度處理(0隻[控制組]、15隻、30隻)。在實驗期間,我們記錄了大豆蚜(Aphis glycines)數量和大豆(Glycine max)的生長、防禦、與生殖性狀。這個系統使用七星瓢蟲(Coccinella septempunctata)作為蚜蟲的掠食者,及熱帶火蟻(Solenopsis geminata)作為蚜蟲的互利共生夥伴。實驗結果顯示,螞蟻密度是影響螞蟻與蚜蟲交互作用、螞蟻與植物的營養瀑布的重要因子。高螞蟻密度提升了蚜蟲數量(互利共生),並可能透過營養瀑布的作用,減少大豆葉片數量和增加大豆葉片硬度;另外,也可能減少大豆豆莢和種子的數量。然而,這些趨勢在暖化下變得不顯著,可能是由於暖化對於蚜蟲的直接正面作用,導致蚜蟲數達到大豆的承載量(carrying capacity),進而掩蓋了螞蟻密度的作用。出乎意料之外,高螞蟻密度增加的大豆植株的高度,推測是透過螞蟻的直接影響作用。此外,暖化會顯著地直接影響植物生長(正負都有),卻幾乎不影響植物生殖表現。綜合上述結果,由於 暖化會降低生物交互作用(互利共生、營養瀑布)的影響力,我們推測暖化的直接作用很可能成為這世紀影響植物表現的主要因子。zh_TW
dc.description.abstractClimate warming has had tremendous impact on agriculture, a lot of which can be attributed to altered biotic interactions under warming. In agricultural systems, biotic interactions often take on the form of tri-trophic systems consisting of plants, herbivores, and predators. Such systems, however, are often made more complex with the presence of ants, which can play multiple ecological roles. While ants have certain benefits to agriculture, they might also facilitate agricultural pests such as aphids. However, ant–aphid interactions, typically described as mutualism, actually range from mutualism to exploitation, and are contingent upon a variety of biotic and abiotic factors. Moreover, due to their ability to influence herbivores (aphids), the outcome of such interactions may generate trophic cascades on plants (crops). On account of their ecological significance, many studies have investigated ant-aphid interactions and ant–plant cascades. Nonetheless, it remains unclear how ant density affects ant-aphid interactions and thereby plant performance (via trophic cascades), and how these effects are mediated by climate warming. To help fill these knowledge gaps, this study examined 1) the effect of ant density on ant–aphid interactions (i.e., aphid population size), 2) the effect of ant density on plants via trophic cascades (i.e., plant growth, defense, and reproduction), and 3) the impact of climate warming on the aforementioned processes. We designed a tri-trophic system (soybean, aphid, ladybug) with the addition of ants, and conducted a 3x3 factorial experiment including temperature (control, + 3°C, + 6°C) and ant density treatments (0 ants [control], 15 ants, 30 ants). We recorded the number of soybean aphids (Aphis glycines), along with the growth, defense, and reproductive traits of soybean plants (Glycine max). The study system included seven-spotted ladybugs (Coccinella septempunctata) as aphid predators and tropical fire ants (Solenopsis geminata) as the aphids’ ant mutualists. Our results show that ant density, overlooked in previous studies, played an important role in ant–aphid interactions and ant–plant cascades. Higher ant density increased aphid number (mutualism), which likely resulted in trophic cascades that reduced leaf number, increased leaf toughness, and possibly reduced pod number and seed number. However, these trends became less obvious under warming. This was probably because warming generated a strong, positive direct effect on aphid population, which may have reached the carrying capacity of soybeans, thus obscuring the effect of ant density. Surprisingly, higher ant density increased plant height, possibly due to some direct ant effect instead of trophic cascades. In addition, warming had a strong direct impact on plant growth, though not reproduction; these effects ranged from positive to negative. Since the effect of biotic interactions (mutualism, trophic cascades) diminished under warming, it is likely that these direct warming effects became the primary influence on plant performance. To conclude, this study showed that warming reduced the effects of biotic interactions (mutualism and trophic cascades), suggesting that abiotic effects (warming) may become the dominant factor in determining crop performance.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:10:46Z (GMT). No. of bitstreams: 1
ntu-108-R04b44020-1.pdf: 2719066 bytes, checksum: 95cadb71ed45638083607842c708f302 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 i
Acknowledgements ii
摘要 iii
Abstract v
Introduction 1
Materials and methods 5
Study system and species 5
Experimental design 6
Experimental setup 7
Trait measurement 8
Statistical analyses 9
Results 11
Aphid number 11
Plant growth 11
Plant defense and development 12
Discussion 13
Summary 13
Ant density effects on ant–aphid interactions 13
Warming impact on ant density effects 14
Ant density and warming effects on crop performance 16
Warming effects on plants 17
Potential caveats 18
Conclusions 19
References 20
Figures 26
Tables 39
Appendices 49
dc.language.isoen
dc.subject生物與非生物作用zh_TW
dc.subject氣候暖化zh_TW
dc.subject螞蟻與植物的營養瀑布zh_TW
dc.subject螞蟻密度zh_TW
dc.subject互利共生zh_TW
dc.subject蚜蟲與瓢蟲的交互作用zh_TW
dc.subject生物交互作用zh_TW
dc.subject螞蟻zh_TW
dc.subject大豆zh_TW
dc.subjectant–plant cascadesen
dc.subjectant densityen
dc.subjectclimate warmingen
dc.subjectsoybeanen
dc.subjectant–aphid–ladybug interactionsen
dc.subjectmutualismen
dc.subjectspecies interactionsen
dc.subjectbiotic and abiotic effecten
dc.title氣候暖化與螞蟻密度如何影響螞蟻、蚜蟲與瓢蟲的交互作用以及農作物的表現zh_TW
dc.titleHow will climate warming and ant density affect ant–aphid–ladybug interactions and crop performance?en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智涵,郭奇芊,林宗岐
dc.subject.keyword生物交互作用,螞蟻密度,氣候暖化,大豆,螞蟻,蚜蟲與瓢蟲的交互作用,互利共生,螞蟻與植物的營養瀑布,生物與非生物作用,zh_TW
dc.subject.keywordspecies interactions,ant density,climate warming,soybean,ant–aphid–ladybug interactions,mutualism,ant–plant cascades,biotic and abiotic effect,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201901745
dc.rights.note有償授權
dc.date.accepted2019-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved