Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72827
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorJia-Ang Ouen
dc.contributor.author歐家昂zh_TW
dc.date.accessioned2021-06-17T07:07:21Z-
dc.date.available2026-02-04
dc.date.copyright2021-03-03
dc.date.issued2021
dc.date.submitted2021-01-29
dc.identifier.citationBarrion, A. T., Aquino, G. B., Kong Luen Heong (International Rice Research Inst., L. B. (1994). Community structures and population dynamics of rice arthropods in irrigated ricefields in the Philippines. Philippine Journal of Crop Science (Philippines). https://agris.fao.org/agris-search/search.do?recordID=PH9710969
Bengtsson, J., Ahnström, J., Weibull, A.-C. (2005). The effects of organic agriculture on biodiversity and abundance: A meta-analysis. Journal of Applied Ecology, 42(2), 261–269. https://doi.org/10.1111/j.1365-2664.2005.01005.x
Betts, M. G., Fahrig, L., Hadley, A. S., Halstead, K. E., Bowman, J., Robinson, W. D., Wiens, J. A., Lindenmayer, D. B. (2014). A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography, 37(6), 517–527. https://doi.org/10.1111/ecog.00740
Bottrell, D. G., Schoenly, K. G. (2012). Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. Journal of Asia-Pacific Entomology, 15(1), 122–140. https://doi.org/10.1016/j.aspen.2011.09.004
Bugg, R. L., Colfer, R. G., Chaney, W. E., Smith, H. A., Cannon, J. (2008). Flower Flies (Syrphidae) and Other Biological Control Agents for Aphids in Vegetable Crops. https://doi.org/10.3733/ucanr.8285
Chaplin-Kramer, R., de Valpine, P., Mills, N. J., Kremen, C. (2013). Detecting pest control services across spatial and temporal scales. Agriculture, Ecosystems Environment, 181, 206–212. https://doi.org/10.1016/j.agee.2013.10.007
Corbett, A., Rosenheim, J. A. (1996). Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecological Entomology, 21(2), 155–164. https://doi.org/10.1111/j.1365-2311.1996.tb01182.x
Coyle, J. R., Hurlbert, A. H., White, E. P. (2013). Opposing Mechanisms Drive Richness Patterns of Core and Transient Bird Species. The American Naturalist, 181(4), E83–E90. https://doi.org/10.1086/669903
Czech, H. A., Parsons, K. C. (2002). Agricultural Wetlands and Waterbirds: A Review. Waterbirds: The International Journal of Waterbird Biology, 25, 56–65.
Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A., Letourneau, D. K., … Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10), eaax0121. https://doi.org/10.1126/sciadv.aax0121
Dominik, C., Seppelt, R., Horgan, F. G., Marquez, L., Settele, J., Václavík, T. (2017). Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agriculture, Ecosystems Environment, 246, 269–278. https://doi.org/10.1016/j.agee.2017.06.011
Dominik, C., Seppelt, R., Horgan, F. G., Settele, J., Václavík, T. (2018). Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. Journal of Applied Ecology, 55(5), 2461–2472. https://doi.org/10.1111/1365-2664.13226
Drechsler, M., Settele, J. (2001). Predator–prey interactions in rice ecosystems: Effects of guild composition, trophic relationships, and land use changes — a model study exemplified for Philippine rice terraces. Ecological Modelling, 137(2), 135–159. https://doi.org/10.1016/S0304-3800(00)00423-3
Driessen, M. M., Kirkpatrick, J. B. (2019). Higher taxa can be effective surrogates for species-level data in detecting changes in invertebrate assemblage structure due to disturbance: A case study using a broad range of orders. Austral Entomology, 58(2), 361–369. https://doi.org/10.1111/aen.12315
Echeverri, A., Frishkoff, L. O., Gomez, J. P., Zook, J. R., Juárez, P., Naidoo, R., Chan, K. M. A., Karp, D. S. (2019). Precipitation and tree cover gradients structure avian alpha diversity in North-western Costa Rica. Diversity and Distributions, 25(8), 1222–1233. https://doi.org/10.1111/ddi.12932
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder, P. K. (2005). Global Consequences of Land Use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452
Frishkoff, L. O., Karp, D. S. (2019). Species-specific responses to habitat conversion across scales synergistically restructure Neotropical bird communities. Ecological Applications, 29(5), e01910. https://doi.org/10.1002/eap.1910
Fuller, R. j, Norton, L. r, Feber, R. e, Johnson, P. j, Chamberlain, D. e, Joys, A. c, Mathews, F., Stuart, R. c, Townsend, M. c, Manley, W. j, Wolfe, M. s, Macdonald, D. w, Firbank, L. g. (2005). Benefits of organic farming to biodiversity vary among taxa. Biology Letters, 1(4), 431–434. https://doi.org/10.1098/rsbl.2005.0357
Gabriel, D., Sait, S. M., Hodgson, J. A., Schmutz, U., Kunin, W. E., Benton, T. G. (2010). Scale matters: The impact of organic farming on biodiversity at different spatial scales. Ecology Letters, 13(7), 858–869. https://doi.org/10.1111/j.1461-0248.2010.01481.x
Gelman, A., Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7(4), 457–472.
Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H.-Y., Iverson, A. L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 20141358. https://doi.org/10.1098/rspb.2014.1358
Gonthier, D. J., Sciligo, A. R., Karp, D. S., Lu, A., Garcia, K., Juarez, G., Chiba, T., Gennet, S., Kremen, C. (2019). Bird services and disservices to strawberry farming in Californian agricultural landscapes. Journal of Applied Ecology, 56(8), 1948–1959. https://doi.org/10.1111/1365-2664.13422
Gounand, I., Harvey, E., Little, C. J., Altermatt, F. (2018). Meta-Ecosystems 2.0: Rooting the Theory into the Field. Trends in Ecology Evolution, 33(1), 36–46. https://doi.org/10.1016/j.tree.2017.10.006
Gurr, G. M., Wratten, S. D., Landis, D. A., You, M. (2017). Habitat Management to Suppress Pest Populations: Progress and Prospects. Annual Review of Entomology, 62(1), 91–109. https://doi.org/10.1146/annurev-ento-031616-035050
Hafner, S. (2003). Trends in maize, rice, and wheat yields for 188 nations over the past 40 years: A prevalence of linear growth. Agriculture, Ecosystems Environment, 97(1), 275–283. https://doi.org/10.1016/S0167-8809(03)00019-7
Hanski, I. (1982). Dynamics of Regional Distribution: The Core and Satellite Species Hypothesis. Oikos, 38(2), 210–221. JSTOR. https://doi.org/10.2307/3544021
Hassell, M. P., May, R. M. (1986). Generalist and Specialist Natural Enemies in Insect Predator-Prey Interactions. Journal of Animal Ecology, 55(3), 923–940. https://doi.org/10.2307/4425
Heong, K. L., Aquino, G. B., Barrion, A. T. (1992). Population dynamics of plant- and leafhoppers and their natural enemies in rice ecosystems in the Philippines. Crop Protection, 11(4), 371–379. https://doi.org/10.1016/0261-2194(92)90066-E
Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122(1), 113–130. https://doi.org/10.1016/j.biocon.2004.07.018
Holt, R. D., Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433–447. https://doi.org/10.1007/BF02270702
Huston, M. A., Wolverton, S. (2009). The global distribution of net primary production: Resolving the paradox. Ecological Monographs, 79(3), 343–377. https://doi.org/10.1890/08-0588.1
IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services (summary for policy makers). Zenodo. https://doi.org/10.5281/ZENODO.3553579
Jaeger, B. C., Edwards, L. J., Das, K., Sen, P. K. (2017). An R2 statistic for fixed effects in the generalized linear mixed model. Journal of Applied Statistics, 44(6), 1086–1105. https://doi.org/10.1080/02664763.2016.1193725
Karp, D. S., Chaplin-Kramer, R., Meehan, T. D., Martin, E. A., DeClerck, F., Grab, H., Gratton, C., Hunt, L., Larsen, A. E., Martínez-Salinas, A., O’Rourke, M. E., Rusch, A., Poveda, K., Jonsson, M., Rosenheim, J. A., Schellhorn, N. A., Tscharntke, T., Wratten, S. D., Zhang, W., … Zou, Y. (2018). Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences, 115(33), E7863–E7870. https://doi.org/10.1073/pnas.1800042115
Karp, D. S., Frishkoff, L. O., Echeverri, A., Zook, J., Juárez, P., Chan, K. M. A. (2018). Agriculture erases climate-driven β-diversity in Neotropical bird communities. Global Change Biology, 24(1), 338–349. https://doi.org/10.1111/gcb.13821
Katayama, N., Osada, Y., Mashiko, M., Baba, Y. G., Tanaka, K., Kusumoto, Y., Okubo, S., Ikeda, H., Natuhara, Y. (2019). Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. Journal of Applied Ecology, 56(8), 1970–1981. https://doi.org/10.1111/1365-2664.13446
Kormann, U., Rösch, V., Batáry, P., Tscharntke, T., Orci, K. M., Samu, F., Scherber, C. (2015). Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Diversity and Distributions, 21(10), 1204–1217. https://doi.org/10.1111/ddi.12324
Kremen, C., Merenlender, A. M. (2018). Landscapes that work for biodiversity and people. Science, 362(6412). https://doi.org/10.1126/science.aau6020
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x
Leibold, Mathew A., Chase, J. M., Ernest, S. K. M. (2017). Community assembly and the functioning of ecosystems: How metacommunity processes alter ecosystems attributes. Ecology, 98(4), 909–919. https://doi.org/10.1002/ecy.1697
Letourneau, D. K., Bothwell, S. G. (2008). Comparison of organic and conventional farms: Challenging ecologists to make biodiversity functional. Frontiers in Ecology and the Environment, 6(8), 430–438. https://doi.org/10.1890/070081
Levins, R., Culver, D. (1971). Regional Coexistence of Species and Competition between Rare Species. Proceedings of the National Academy of Sciences, 68(6), 1246–1248. https://doi.org/10.1073/pnas.68.6.1246
Lin, P.-A., Liu, C.-M., Ou, J.-A., Sun, C.-H., Chuang, W.-P., Ho, C.-K., Kinoshita, N., Felton, G. W. (2020). Changes in arthropod community but not plant quality benefit a specialist herbivore on plant under reduced water availability. BioRxiv, 2020.05.25.115519. https://doi.org/10.1101/2020.05.25.115519
Loreau, M., Mouquet, N., Holt, R. D. (2003). Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6(8), 673–679. https://doi.org/10.1046/j.1461-0248.2003.00483.x
MacArthur, R. H. (1958). Population Ecology of Some Warblers of Northeastern Coniferous Forests. Ecology, 39(4), 599–619. https://doi.org/10.2307/1931600
Macfadyen, S., Kramer, E. A., Parry, H. R., Schellhorn, N. A. (2015). Temporal change in vegetation productivity in grain production landscapes: Linking landscape complexity with pest and natural enemy communities. Ecological Entomology, 40(S1), 56–69. https://doi.org/10.1111/een.12213
Maguire, K. C., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C., Williams, J. W., Ferrier, S., Lorenz, D. J. (2016). Controlled comparison of species- and community-level models across novel climates and communities. Proceedings of the Royal Society B: Biological Sciences, 283(1826), 20152817. https://doi.org/10.1098/rspb.2015.2817
Magurran, A. (2004). Measuring Biological Diversity. Oxford, UK: Blackwell Publishing. http://www.bio-nica.info/Biblioteca/Magurran2004MeasuringBiological.pdf
Moran, A. V. C., Southwood, T. R. E., Moran, V. C., Southwood, T. R. E. (1982). The guild composition of arthropod communities in trees. Journal of Animal Ecology, 289–306.
Muylaert, R. L., Stevens, R. D., Ribeiro, M. C. (2016). Threshold effect of habitat loss on bat richness in cerrado-forest landscapes. Ecological Applications, 26(6), 1854–1867. https://doi.org/10.1890/15-1757.1
Ovaskainen, O., Abrego, N. (2020). Joint Species Distribution Modelling: With Applications in R. Cambridge University Press. https://doi.org/10.1017/9781108591720
Ovaskainen, O., Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. Ecology, 92(2), 289–295. https://doi.org/10.1890/10-1251.1
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T., Abrego, N. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20(5), 561–576. https://doi.org/10.1111/ele.12757
Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2959–2971. https://doi.org/10.1098/rstb.2010.0143
Pulliam, H. R. (1988). Sources, Sinks, and Population Regulation. The American Naturalist, 132(5), 652–661.
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L. H. (2018). Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annual Review of Plant Biology, 69(1), 789–815. https://doi.org/10.1146/annurev-arplant-042817-040256
Rundlöf, M., Smith, H. G. (2006). The effect of organic farming on butterfly diversity depends on landscape context. Journal of Applied Ecology, 43(6), 1121–1127. https://doi.org/10.1111/j.1365-2664.2006.01233.x
Schmidt, M. H., Lauer, A., Purtauf, T., Thies, C., Schaefer, M., Tscharntke, T. (2003). Relative importance of predators and parasitoids for cereal aphid control. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1527), 1905–1909. https://doi.org/10.1098/rspb.2003.2469
Schmidt, M. H., Roschewitz, I., Thies, C., Tscharntke, T. (2005). Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. Journal of Applied Ecology, 42(2), 281–287. https://doi.org/10.1111/j.1365-2664.2005.01014.x
Schneider, M. K., Lüscher, G., Jeanneret, P., Arndorfer, M., Ammari, Y., Bailey, D., Balázs, K., Báldi, A., Choisis, J.-P., Dennis, P., Eiter, S., Fjellstad, W., Fraser, M. D., Frank, T., Friedel, J. K., Garchi, S., Geijzendorffer, I. R., Gomiero, T., Gonzalez-Bornay, G., … Herzog, F. (2014). Gains to species diversity in organically farmed fields are not propagated at the farm level. Nature Communications, 5(1), 1–9. https://doi.org/10.1038/ncomms5151
Schoenly, K., Cohen, J. E., Heong, K. L., Litsinger, J. A., Aquino, G. B., Barrion, A. T., Arida, G. (1996). Food web dynamics of irrigated rice fields at five elevations in Luzon, Philippines. Bulletin of Entomological Research, 86(4), 451–466. https://doi.org/10.1017/S0007485300035033
Settele, J., Settle, W. H. (2018). Conservation biological control: Improving the science base. Proceedings of the National Academy of Sciences, 115(33), 8241–8243. https://doi.org/10.1073/pnas.1810334115
Snyder, W. E., Ives, A. R. (2001). Generalist Predators Disrupt Biological Control by a Specialist Parasitoid. Ecology, 82(3), 705–716. https://doi.org/10.1890/0012-9658(2001)082[0705:GPDBCB]2.0.CO;2
Sutter, L., Jeanneret, P., Bartual, A. M., Bocci, G., Albrecht, M. (2017). Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant crop-pollinating bees through complementary increase in key floral resources. Journal of Applied Ecology, 54(6), 1856–1864. https://doi.org/10.1111/1365-2664.12907
Symondson, W. O. C., Sunderland, K. D., Greenstone, M. H. (2002). Can Generalist Predators be Effective Biocontrol Agents? Annual Review of Entomology, 47(1), 561–594. https://doi.org/10.1146/annurev.ento.47.091201.145240
Thies, C., Roschewitz, I., Tscharntke, T. (2005). The landscape context of cereal aphid–parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 272(1559), 203–210. https://doi.org/10.1098/rspb.2004.2902
Tikhonov, G., Ovaskainen, O., Oksanen, J., Jonge, M. de, Opedal, O., Dallas, T. (2020). Hmsc: Hierarchical Model of Species Communities (3.0-9) [Computer software]. https://CRAN.R-project.org/package=Hmsc
Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., Swackhamer, D. (2001). Forecasting Agriculturally Driven Global Environmental Change. Science, 292(5515), 281–284. https://doi.org/10.1126/science.1057544
Tingley, M. W., Beissinger, S. R. (2013). Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology, 94(3), 598–609. https://doi.org/10.1890/12-0928.1
Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8(8), 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biological Reviews, 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x
Umaña, M. N., Zhang, C., Cao, M., Lin, L., Swenson, N. G. (2017). A core-transient framework for trait-based community ecology: An example from a tropical tree seedling community. Ecology Letters, 20(5), 619–628. https://doi.org/10.1111/ele.12760
Vandermeer, J., Perfecto, I., Schellhorn, N. (2010). Propagating sinks, ephemeral sources and percolating mosaics: Conservation in landscapes. Landscape Ecology, 25(4), 509–518. https://doi.org/10.1007/s10980-010-9449-2
Warton, D. I., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., Taskinen, S., Walker, S. C., Hui, F. K. C. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology Evolution, 30(12), 766–779. https://doi.org/10.1016/j.tree.2015.09.007
Wetzel, W. C., Kharouba, H. M., Robinson, M., Holyoak, M., Karban, R. (2016). Variability in plant nutrients reduces insect herbivore performance. Nature, 539(7629), 425–427. https://doi.org/10.1038/nature20140
White, E. P., Hurlbert, A. H. (2010). The Combined Influence of the Local Environment and Regional Enrichment on Bird Species Richness. The American Naturalist, 175(2), E35–E43. https://doi.org/10.1086/649578
Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L. W., Eggers, S., Fischer, C., Flohre, A., Geiger, F., Liira, J., Pärt, T., Thies, C., Tscharntke, T., Weisser, W. W., Bommarco, R. (2011). Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 48(3), 570–579. https://doi.org/10.1111/j.1365-2664.2010.01950.x
Zeigler, R. S., Barclay, A. (2008). The Relevance of Rice. Rice, 1(1), 3–10. https://doi.org/10.1007/s12284-008-9001-z
Zhang, C., Chen, Y., Xu, B., Xue, Y., Ren, Y. (2020). Improving prediction of rare species’ distribution from community data. Scientific Reports, 10(1), 12230. https://doi.org/10.1038/s41598-020-69157-x
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72827-
dc.description.abstract農業地景為蘊育生物多樣性的動態鑲嵌體,其環境條件會隨空間尺度而變化。為了保護農業地景的生物多樣性及所提供的生態系統服務,我們需要了解環境因子在各空間尺度下與生物多樣性的相關性。此外,我們需要了解個別物種層級的反應如何匯集成群聚層級的反應,因為生物多樣性涵蓋了個別物種的個體數量(族群密度)和物種的共存關係(物種豐富度)。本研究採集第一季稻作的節肢動物(物種及功能性皆豐富的類群),並探討農田因子(有機耕作、水深、作物高度)和地景因子(森林覆蓋率、樣區相對位置)如何影響節肢動物的族群密度和分佈。我們利用可分析時空因子的聯合物種分佈模型(JSDM)探討:1)各物種對當地(農田)和地景因子是否有不同的反應? 2)是否能用營養功能群(trophic guild)的概念解釋各物種對以上環境因子之不同反應? 3)個別物種層級的反應如何匯集並影響節肢動物群聚的生物多樣性(物種豐富度)? 我們的結果顯示,整體環境因子的平均重要性不高(平均Pseudo-R2 = 0.21),表示本農業系統中物種的族群密度主要是受隨機性因素的影響。不過,環境因子的重要性在各個物種間差異頗大(最高Pseudo-R2 = 0.87,最低Pseudo-R2 = 0.01),此外,營養功能群僅解釋了約15%的物種反應變異量,顯示物種反應具有很高的差異性。根據我們建構的群聚層級物種豐富度統計模型,我們發現有機耕作沒有顯著地影響物種豐富度,但是作物高度和水深與物種豐富度有負相關,而森林覆蓋率會增加了物種豐富度。此外,物種反應的差異性反映了各個環境因子的重要性。最後,我們發現此農業系統中物種族群密度的建構過程並不會受到物種擴散能力的限制。根據以上結果,本研究討論相關的應用性,例如農民所關注物種之經營管理(如害蟲和天敵)。綜上所述,本研究顯示稻田節肢動物族群的動態具有高度隨機性,即使在同一營養功能群中,各物種對環境因子的反應也具有高度的多樣性,而本研究亦提出相關機制的假說。此外,本研究的結果協助釐清動態鑲嵌農業地景中生物多樣性的建構過程,彰顯從物種層級了解生物多樣性的重要性。zh_TW
dc.description.abstractSpecies in agricultural landscapes live and move among dynamic mosaics where environmental conditions vary across spatial scales. To safeguard agro-biodiversity and associated ecosystem services, it is important to understand the spatial scales of environmental variables relevant to biodiversity. Furthermore, we need to examine how species-specific responses to environmental variables give rise to community-level patterns. This is because biodiversity is an emergent property that arises from the abundance and co-occurrence of individual species. However, few biodiversity studies have accounted for the heterogeneity in species responses, impeding our understanding of ecological processes that structure biodiversity. In this study, we sampled paddy-field inhabiting arthropods, a speciose and functionally rich taxa, across the first growing season and examined how local (organic farming, water depth, and crop height) and landscape factors (forest cover and geographic distance) affect their abundance and distribution. We built a spatio-temporally explicit joint species distribution model (JSDM) to answer three main questions: 1) How do species differ in their response to local and landscapes factors? 2) Can trophic guild explain the variation in species responses to environmental covariates? 3) How do species-specific responses scale-up to structure arthropod community richness? Our results show that the mean importance of environmental covariates, measured as the percentage of explained variance (Pseudo-R2), was low overall (mean Pseudo-R2 = 0.21), suggesting the prevalence of stochasticity in structuring species abundances in our system. However, environmental importance varied substantially across species (highest Pseudo-R2 = 0.87 and lowest Pseudo-R2 = 0.01), and trophic guild explained only approximately 15% of species responses, which indicates high idiosyncrasy in species responses both within and among guilds. Using our trained model to predict community-level species richness, we found that organic farming had no effect, crop height and water depth decreased, while forest cover increased species richness. Moreover, the importance of each environmental covariate was reflected by the variability of species responses. Lastly, we found no evidence of dispersal limitation (i.e. geographic distance) in structuring species abundances. We discuss the implications of these findings, specifically with regards to the management of specific species that may be of interest to farmers such as insect pests and predators. Taken together, our study suggests that many paddy field arthropods exhibit transient dynamics and that environmental effects are highly species-specific, even within the same trophic guild. We provide some hypotheses on why this is so. Most importantly, our study highlights the need and value of understanding biodiversity from the species level to understand the processes that structure them in dynamic mosaic agricultural landscapes.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:07:21Z (GMT). No. of bitstreams: 1
U0001-0501202109155200.pdf: 3479688 bytes, checksum: a38535f202894e58c5cc80c907ed52fe (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of Contents
ACKNOWLEDGMENTS II
摘要 IV
ABSTRACT V
INTRODUCTION 1
AGRICULTURE AND BIODIVERSITY: THREATS AND OPPORTUNITIES 1
LOCAL AND LANDSCAPE FACTORS IN AGROECOSYSTEMS 1
HETEROGENEITY IN SPECIES RESPONSES 2
INTRODUCTION OF RICE AGRICULTURAL SYSTEMS 4
STUDY OBJECTIVE 4
MATERIALS AND METHODS 5
STUDY SITE DESCRIPTION 5
ARTHROPOD SAMPLING AND IDENTIFICATION 6
ENVIRONMENTAL COVARIATES 7
DATA ANALYSIS 8
RESULTS 11
ARTHROPOD ABUNDANCE AND TAXONOMIC COVERAGE 11
IMPORTANCE OF ENVIRONMENTAL CONDITIONS 12
FAMILY-SPECIFIC RESPONSES TO THE ENVIRONMENT 13
MEAN AND VARIABILITY OF ENVIRONMENTAL EFFECTS ACROSS SPECIES 14
EFFECTS OF SPACE AND TIME ON SPECIES ABUNDANCE AND DISTRIBUTION 14
EFFECTS OF ENVIRONMENT ON COMMUNITY-LEVEL RICHNESS 15
DISCUSSION 16
1. HOW DO SPECIES DIFFER IN THEIR RESPONSES TO LOCAL AND LANDSCAPE FACTORS? 16
2. CAN TROPHIC GUILDS BE USED AS A GOOD PROXY OF SPECIES RESPONSES TO ENVIRONMENTAL VARIABLES? 19
3. HOW DO SPECIES-SPECIFIC RESPONSES SCALE-UP TO STRUCTURE ARTHROPOD BIODIVERSITY (I.E. SPECIES RICHNESS)? 20
CONCLUSIONS 21
REFERENCES 22
APPENDIX 46
dc.language.isoen
dc.subject農業生態zh_TW
dc.subjectJSDMzh_TW
dc.subject營養群zh_TW
dc.subject空間尺度zh_TW
dc.subjectMetacommunityzh_TW
dc.subject生物多樣性zh_TW
dc.subjectMetacommunityen
dc.subjectJSDMen
dc.subjectAgroecologyen
dc.subjectTrophic guildsen
dc.subjectSpatial scalesen
dc.subjectBiodiversityen
dc.title農田與地景因子對水稻田節肢動物多樣性的影響: 從物種到群聚zh_TW
dc.titleEffects of local and landscape factors on paddy field arthropod diversity: from species to communitiesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝志豪(Chih-Hao Hsieh),李玲玲(Ling-Ling Lee),澤大衛(David Zeleny)
dc.subject.keyword農業生態,生物多樣性,Metacommunity,空間尺度,營養群,JSDM,zh_TW
dc.subject.keywordAgroecology,Biodiversity,Metacommunity,Spatial scales,Trophic guilds,JSDM,en
dc.relation.page50
dc.identifier.doi10.6342/NTU202100014
dc.rights.note有償授權
dc.date.accepted2021-02-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-0501202109155200.pdf
  未授權公開取用
3.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved