請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72802完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高振宏 | |
| dc.contributor.author | Jui-Yang Wu | en |
| dc.contributor.author | 吳瑞洋 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:06:37Z | - |
| dc.date.available | 2029-12-31 | |
| dc.date.copyright | 2019-08-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-25 | |
| dc.identifier.citation | [1] K. N. Tu, “Reliability challenges in 3D IC packaging technology,” Microelectronics Reliability, Vol. 51, pp. 517-523, 2011
[2] K. N. Tu, H. Y. Hsiao, C. Chen, “Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy,” Microelectronics Reliability, Vol. 53, pp. 2-6, 2013 [3] J. H. Lau, “TSV manufacturing yield and hidden costs for 3D IC integration,” Electronic Components and Technology Conference, pp. 1031-1042, 2010 [4] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, “Towards a 'More-than-Moore' roadmap,” Cluster for Application and Technology Research in Europe on NanoElectronics, 2011 [5] B. Banijamali, S. Ramalingam, H. Liu, K. Myongseob, “Outstanding and innovative reliability study of 3D TSV interposer and fine pitch solder micro-bumps,” Electronic Components and Technology Conference, pp. 309-314, 2012 [6] C. Hang, Y. Tian, R. Zhang, and D. Yang, “Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process,” Journal of Materials Science: Materials in Electronics, Vol. 24, pp. 3905-3913, 2013 [7] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, 'Surface studies by scanning tunneling microscopy,' Physical Review Letters, Vol. 49, pp. 57-61, 1982 [8] A. P. Ternovskii, V. P. Alekhin, M. Kh. Shorshorov, M. M. Khrushchov, V. N. Skvortsov, 'Mechanical testing of materials by micro pressing technique,' Zavodskaya Laboratoriya, Vol. 39, pp. 1242-1247, 1973 [9] S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, G. D. Shnyrev, 'Determining Young's modulus from the indentor penetration diagram,' Zavodskaya Laboratoriya, Vol. 41, pp. 1137-1140, 1975 [10] F. Fröhlich, P. Grau, W. Grellmann, 'Performance and analysis of recording microhardness tests,' Physica Status Solidi (a), Vol. 42, pp. 79-89, 1977 [11] D. Newey, M. A. Wilkins, H. M. Pollock, 'An ultra-low-load penetration hardness tester,' Journal of Physics E: Scientific Instruments, Vol. 15, pp. 119-122, 1982 [12] J. L. Loubet, J. M. Georges, O. Marchesini, G. Meille, 'Vickers indentation curves of magnesium oxide (MgO),' Journal of Tribology, Vol. 106, pp. 43-48, 1984 [13] J. B. Pethica, R. Hutchings, W. C. Oliver, 'Hardness measurement at penetration depths as small as 20 nm,' Philosophical Magazine A , Vol. 48, pp. 593-606, 1983 [14] M. R. VanLandingham, 'Review of instrumented indentation,' Journal of research of the National Institute of Standards and Technology, Vol. 108, pp. 249-265, 2003 [15] W. C. Oliver, G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol. 19, pp. 3-20, 2004 [16] C. A. Schuh, 'Nanoindentation studies of materials,' Materials today, Vol. 9, pp. 32-40, 2006 [17] M. Hardiman, T. J. Vaughan, C. T. McCarthy, 'The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation,' Polymer Testing, Vol. 52, pp. 157-166, 2016 [18] D. Kiener , C. Motz , G. Dehm, 'Micro-compression testing: A critical discussion of experimental constraints,' Materials Science and Engineering: A, Vol. 505, pp. 79-87, 2009 [19] M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix, 'Sample dimensions influence strength and crystal plasticity,' Science, Vol. 305, pp. 986-989, 2004 [20] M. C. Liu, J. C. Huang, Y. T. Fong, S. P. Ju, X. H. Du, H. J. Pei, T. G. Nieh, 'Assessing the interfacial strength of an amorphous–crystalline interface,' Acta Materialia, Vol. 61, pp. 3304-3313, 2013 [21] D. R. P. Singh, N. Chawla, G. Tang, Y. L. Shen, 'Micropillar compression of Al/SiC nanolaminates,' Acta Materialia, Vol. 58, pp. 6628-6636, 2010 [22] J. Hütsch, E. T. Lilleodden, 'The influence of focused-ion beam preparation technique on microcompression investigations: Lathe vs. annular milling,' Scripta Materialia, Vol. 77, pp. 49-51, 2014 [23] M. D. Uchic, D. M. Dimiduk, 'A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing,' Materials Science and Engineering: A, Vol. 400-401, pp. 268-278, 2005 [24] H. Okamoto, 'Phase diagrams of dilute binary alloys,' ASM International, pp. 243, 2002 [25] A. Gangulee, G. Das, M. Bever, 'An x-ray diffraction and calorimetric investigation of the compound Cu6Sn5,' Metallurgical Transactions, Vol. 4, pp. 2063-2066, 1973 [26] G. Zeng, S. D. McDonald, J. Read, Q. F. Gu, K. Nogita, 'Kinetics of the polymorphic phase transformation of Cu6Sn5,' Acta Materialia, Vol. 68, pp. 135-148, 2014 [27] A. K. Larsson, L. Stenberg, S. Lidin, 'Crystal structure modulations in eta-Cu5Sn4,' Zeitschrift für Kristallographie, Vol. 210, pp. 832–837, 1995 [28] Y. Q. Wu, J. C. Barry, T. Yamamoto, Q. F. Gu, S. D. McDonald, S. Matsumura, H. Huang, K. Nogita, 'A new phase in stoichiometric Cu6Sn5,' Acta Materialia, Vol. 60, pp. 6581-6591, 2012 [29] G. Ghosh, M. Asta, 'Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results,' Journal of Materials Research, Vol. 20, pp. 3102-3117, 2005 [30] K. K. Wang, D. Gan, K. C. Hsieh, 'Orientation relationships, interfaces, and microstructure of η-Cu6Sn5 formed in the early-stage reaction between Cu and molten Sn,' Thin Solid Films, Vol. 519, pp. 1380–1386, 2010 [31] K. K. Wang, D. Gan, K. C. Hsieh, S. Y. Chiou, 'The microstructure of η’-Cu6Sn5 and its orientation relationships with Cu in the early stage of growth,' Thin Solid Films, Vol. 518, pp. 1667-1674, 2010 [32] X. J. Liu, R. Kainuma, C. P. Wang, I. Ohnuma, K. Ishida, 'Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems,' Materials Transactions A, Vol. 35, pp. 1641-1654, 2004 [33] M. Li, Z. Zhang, J. Kim, 'Polymorphic transformation mechanism of η and η’ in single crystalline Cu6Sn5,' Applied Physics Letters, Vol. 98, pp. 201901, 2011 [34] T. Laurila, V. Vuorinen, J. K. Kivilahti, 'Interfacial reactions between lead-free solders and common base materials,' Materials Science and Engineering: R: Reports, Vol. 49, pp. 1-60, 2005 [35] G. Zeng, S. D. McDonald, Q. Gu, S. Suenaga, Y. Zhnag, J. Chen, K. Nogita 'Phase stability and thermal expansion behavior of Cu6Sn5 intermetallics doped with Zn, Au and In,' Intermetallics, Vol. 43, pp. 85-98, 2013 [36] K. Nogita, C. M. Gourlay, S. D. McDonald, Y. Q. Wu, J. Read, Q. F. Gu, 'Kinetics of the η–η’ transformation in Cu6Sn5,' Scripta Materialia, Vol. 65, pp. 922-925, 2011 [37] Y. Q. Wu, S. D. McDonald, J. Read, H. Huang, K. Nogita, 'Determination of the minimum Ni concentration to prevent the η to η4+ 1 polymorphic transformation of stoichiometric Cu6Sn5,' Scripra Materialia, Vol. 68, pp. 595-598, 2013 [38] U. Schwingenschlögl, C. Di Paola, K. Nogita, C. M. Gourlay, 'The influence of Ni additions on the relative stability of η and η’ Cu6Sn5,' Applied Physics Letters, Vol. 96, pp. 061908, 2010 [39] K. Nogita, C. M. Gourlay, T. Nishimura, 'Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates,' The Journal of The Minerals, Metals & Materials Society, Vol. 61, pp. 45-51, 2009 [40] C. M. Gourlay, K. Nogita, S. D. McDonald, T. Nishimura, K. Sweatman, A. K. Dahle, 'A rheological assessment of the effect of trace level Ni additions on the solidification of Sn–0.7Cu,' Scripta Materialia, Vol. 54, pp. 1557-1562, 2006 [41] D. Mu, J. Read, Y. Yang, K. Nogita, 'Thermal expansion of Cu6Sn5 and (Cu,Ni)6Sn5,' Journal of Materials Research, Vol. 26, pp. 2660-2664, 2011 [42] K. Nogita, 'Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys,' Intermetallics, Vol. 18, pp. 145-149, 2010 [43] K. Nogita, D. Mu, S. D. McDonald, J. Read, Y. Q. Wu, 'Effect of Ni on phase stability and thermal expansion of Cu6−xNixSn5 (x=0, 0.5, 1, 1.5 and 2)' Intermetallics, Vol. 26, pp. 78-85, 2012 [44] K. Nogita, T. Nishimura, 'Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys,' Scripta Materialia, Vol. 59, pp. 191-194, 2008 [45] G. Zeng, S. D. McDonald, Q. Gu, K. Nogita, 'Effect of Zn, Au, and In on the polymorphic phase transformation in Cu6Sn5 intermetallics,' Journal of Materials Research, Vol. 27, pp. 2609-2614, 2012 [46] D. K. Mu, S. D. McDonald, J. Read, H. Huang, K. Nogita, 'Critical properties of Cu6Sn5 in electronic devices: Recent progress and a review,' Current Opinion in Solid State and Materials Science, Vol. 20, pp. 55-76, 2016 [47] H. Tsukamoto, Z. Dong, H. Huang, T. Nishimura, K. Nogita, 'Nanoindentation characterization of intermetallic compounds formed between Sn–Cu (–Ni) ball grid arrays and Cu substrates,' Materials Science and Engineering B, Vol. 164, pp. 44-50, 2009 [48] Y. Rosenthal, A. Stern, S. R. Cohen, D. Eliezer, 'Nanoindentation measurements and mechanical testing of as-soldered and aged Sn–0.7Cu lead-free miniature joints,' Materials Science and Engineering A, Vol. 527, pp. 4014-4020, 2010 [49] J. M. Song, B. R. Huang, C. Y. Liu, Y. S. Lai, Y. T. Chiu, T. W. Huang, 'Nanomechanical responses of intermetallic phase at the solder joint interface–Crystal orientation and metallurgical effects,' Materials Science and Engineering A, Vol. 534, pp. 53-59, 2012 [50] D. Mu, H. Huang, S. D. McDonald, J. Read, K. Nogita, 'Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu,Ni)6Sn5 on diverse crystal planes,' Materials Science & Engineering A, Vol. 566, pp. 126-133, 2013 [51] L. Jiang, H. Jiang, N. Chawla, “The effect of crystallographic orientation on the mechanical behavior of Cu6Sn5 by micropillar compression testing,” Journal of Electronic Materials, Vol. 41, pp. 2083-2088, 2012 [52] M Abtew, G Selvaduray, 'Lead-free solders in microelectronics,' Materials Science and Engineering: R: Reports, Vol. 27, pp. 95-141, 2000 [53] T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, 'Impurity and alloying effects on interfacial reaction layers in Pb-free soldering,' Materials Science and Engineering: R: Reports, Vol. 68, pp. 1-38, 2010 [54] G. Zeng, S. Xue, L. Zhang, L. Gao, 'Recent advances on Sn–Cu solders with alloying elements: review,' Journal of Materials Science: Materials in Electronics, Vol. 22, pp. 565–578, 2011 [55] N. Li, N. A. Mara, J. Wang, P. Dickerson, J. Y. Huang, A. Misra, 'Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers,' Scripta Materialia, Vol. 67, pp. 479-482, 2012 [56] A. P. Sutton, R. W. Balluffi, 'Interfaces in Crystalline Materials,' Oxford University Press, 1995 [57] J. P. Hirth, 'The influence of grain boundaries on mechanical properties,' Metallurgical Transactions, Vol. 3, pp. 3047-3067, 1972 [58] J. C. M. Li, 'Pile-up of dissociated dislocations and the strength-grain size relationship,' Philosophical Magazine, Vol. 19, pp. 189-198, 1969 [59] J. Wang, R. G. Hoagland, J. P. Hirth, A. Misra, 'Atomistic modeling of the interaction of glide dislocations with “weak” interfaces,' Acta Materialia, Vol. 56, pp. 5685-5693, 2008 [60] J. Wang, R. G. Hoagland, J. P. Hirth, A. Misra, 'Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces,'Acta Materialia, Vol. 56, pp. 3109-3119, 2008 [61] J. Wang, A. Misra, R. G. Hoagland, J. P. Hirth, 'Slip transmission across fcc/bcc interfaces with varying interface shear strengths,' Acta Materialia, Vol. 60, pp. 1503-1513, 2012 [62] J. R. Greer, W. C. Oliver, W. D. Nix, 'Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients,' Acta Materialia, Vol. 53, pp. 1821–1830, 2005 [63] J. R. Greer, D. Jang, J. Y. Kim, M. J. Burek, 'Emergence of new mechanical functionality in materials via size reduction,' Advanced Functional Materials, Vol. 19, pp. 2880-2886, 2009 [64] J. Y. Kim, D. Jang, J. R. Greer, 'Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale,' Acta Materialia, Vol. 58, pp. 2355-2363, 2010 [65] J. R. Greer, J. Th.M. De Hosson, 'Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect,' Progress in Materials Science, Vol. 56, pp. 654-724, 2011 [66] H. Zhang, B. E. Schuster, Q. Wei, K. T. Ramesh, 'The design of accurate micro-compression experiments,' Scripta Materialia, Vol. 54, pp. 181-186, 2006 [67] L. Jiang, N. Chawla, 'Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing,' Scripta Materialia, Vol. 63, pp. 480-483, 2010 [68] I. N. Sneddon, 'The relationship between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,' International Journal of Engineering Science, Vol. 3, pp. 47-57, 1965 [69] C. A. Volkert, E. T. Lilleodden, 'Size effects in the deformation of sub-micron Au columns,' Philosophical Magazine, Vol. 86, pp. 5567–5579, 2006 [70] C. P. Frick, B. G. Clark, S. Orso, A. S. Schneider, E. Arzt, 'Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars,' Materials Science and Engineering: A, Vol. 489, pp. 319-329, 2008 [71] R. Maaß, P. M. Derlet, 'Micro-plasticity and recent insights from intermittent and small-scale plasticity,' Acta Materialia, Vol. 143, pp. 338-363, 2018 [72] J. R. Morris, H. Bei, G. M. Pharr, E. P. George, 'Size effects and stochastic behavior of nanoindentation pop in,' Physical Review Letters, Vol. 106, p. 165502, 2011 [73] D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, H.S. Leipner, 'Pop-in effect as homogeneous nucleation of dislocations during nanoindentation,' Physical Review B, Vol. 67, pp. 172101, 2013 [74] L. Zhang, T. Ohmura, 'Plasticity initiation and evolution during nanoindentation of an iron-3% silicon crystal,' Physical Review Letters, Vol. 112, pp. 145504, 2014 [75] Z. J. Wang, Q. J. Li, Z. W. Shan, J. Li, J. Sun, E. Ma, 'Sample size effects on the large strain bursts in submicron aluminum pillars,' Applied Physics Letters, Vol. 100, pp. 071906, 2012 [76] X. Zhang, X. Zhang, F. Shang, Q. Li, 'Second-order work and strain burst in single-crystalline micropillar plasticity,' International Journal of Plasticity, Vol. 77, pp. 192-213, 2016 [77] Z. W. Shan, R. K. Mishra, S. A. Syed Asif, O. L. Warren, A. M. Minor, 'Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals,' Nature Materials, Vol. 7, pp. 115–119, 2008 [78] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, 'Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale,' Science, Vol. 318, pp. 251-254, 2007 [79] Z. Zheng, D. S. Balint, F. P. E. Dunne, 'Rate sensitivity in discrete dislocation plasticity in hexagonal close-packed crystals,' Acta Materialia, Vol. 107, pp. 17-26, 2016 [80] Q. K. Zhang, J. Tan, Z. F. Zhang, 'Fracture behaviors and strength of Cu6Sn5 intermetallic compounds by indentation testing,' Journal of Applied Physics, Vol. 110, p. 014502, 2011 [81] H. C. Cheng, C. F. Yu, W. H. Chen, “Strain- and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation,” Journal of Materials Science, Vol. 47, pp. 3103-3114, 2012 [82] P. Yao, X. Li, X. Han, L. Xu, “Shear strength and fracture mechanism for full Cu-Sn IMCs solder joints with different Cu3Sn proportion and joints with conventional interfacial structure in electronic packaging,” Soldering & Surface Mount Technology, Vol. 31, pp. 6-19, 2019 [83] L. Liu, Z. Chen, C. Liu, Y. Wu, B. An, “Micro-mechanical and fracture characteristics of Cu6Sn5 and Cu3Sn intermetallic compounds under micro-cantilever bending,” Intermetallics, Vol. 76, pp. 10-17, 2016 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72802 | - |
| dc.description.abstract | 半導體產業之線寬微縮製程日益逼近物理極限,三維積體電路被視為最有潛力能延續、甚至超越摩爾定律之封裝技術;然而,有鑑於微銲點體積急劇縮減,界面反應將在短時間內耗盡銲錫並生成大量介金屬化合物,使得介金屬有機會佔據整個微銲點。換言之,微銲點機械可靠度之關鍵已迥異於傳統上受銲料主導之球矩陣封裝接點及覆晶銲點,而係轉為由介金屬化合物決定。基於對微銲點可靠度評估之迫切需求,本研究採微米柱壓縮測試與奈米壓痕試驗來仔細探究不同晶粒取向Cu6Sn5介金屬於微米尺度下之機械行為。
首先,本研究對於微米柱壓縮測試提出校正方法,並成功取得符合奈米壓痕結果之楊氏模數以消弭探針、底材、錯位及重力所造成之誤差。其次,實驗之應力應變曲線顯示,Cu6Sn5微米柱在脆性破斷前會發生不連續應變之跳升,穿透式電子顯微鏡證實該塑性現象涉及微米柱內部之差排滑移。同時,本研究亦建立出Cu6Sn5晶粒取向與機械性質之關係,發現沿六方晶體之c軸測試時,Cu6Sn5展現出較高之楊氏模數。此外,微添加Ni元素至Cu6Sn5可大幅提高機械強度並穩定其六方晶體之結構。最後,實驗亦測量Cu6Sn5/Sn/Cu6Sn5及Cu6Sn5/Cu3Sn/Cu多層微米柱之機械行為,以期瞭解真實微銲點中之介面強度及破壞模式。結果顯示,Cu6Sn5/Sn/Cu6Sn5三層結構之微米柱會以介面滑動來發生塑性形變,在承受10%以上之應變量後,仍保有其結構完整性且於其內部介面無孔洞生成。另一方面,Cu6Sn5/Cu3Sn/Cu三層微米柱在受到壓應力時,此結構之塑性變形係以底材Cu之滑移達成,代表介金屬之間的介面具有足夠之強度。本研究結果將有助於三維積體電路微銲點之可行性及可靠度之評估。 | zh_TW |
| dc.description.abstract | As semiconductor industry is confronted with the challenge of physical limit in scaling down transistor size, three dimensional integrated circuits (3D ICs) serve as one of the most promising technologies to extend Moore’s law (More-Moore) or even go More-than-Moore. Yet, the miniaturization of micro solder joints, an essential joining structure in 3D IC technology, leads to quick transformation from solders into intermetallic compounds (IMCs) in the joint. When a large portion of micro joints is occupied by IMCs, the mechanical properties and deformation behaviors of micro joints are no longer dominated by solder as in conventional flip-chip joints and ball grid array (BGA) joints, and instead intermetallics are anticipated to shoulder primary responsibility of mechanical reliability of micro joints. In light of this, this study puts emphasis on mechanical reliability assessment of single crystalline IMCs and IMC-based multiphase structures by means of nanoindentation and micropillar compression.
In order to eliminate the influence of indenter, substrate, misalignment and gravity effect under tilt condition, a calibration approach for micropillar compression is firstly established such that Young’s moduli measured from micropillar compression tests are in good agreement with those from nanoindentation. Also, the stress-strain curves show that Cu6Sn5 exhibited one or more strain bursts prior to brittle fracture, and the post-mortem transmission electron microscopy (TEM) analysis suggests that dislocation gliding inside micropillars is involved in strain jumps. Besides, a statistical analysis of the anisotropy in hexagonal Cu6Sn5 is also carried out based on micro-compression as well as nanoindentation results, where Cu6Sn5 exhibits a higher value of Young’s modulus when the loading direction is closer to c-axis. Furthermore, Ni addition into Cu6Sn5 can notably enhance mechanical strength and stabilize the hexagonal structure. Last but not least, multilayered micropillars (Cu6Sn5/Sn/Cu6Sn5 and Cu6Sn5/Cu3Sn/Cu) containing heterogeneous phase interfaces provide insight into overall deformation behaviors in real Cu-Sn interconnects. On one hand, Cu6Sn5/Sn/Cu6Sn5 cylinders exhibit remarkable plasticity in the manner of interface sliding at around 100 MPa, accommodating at least 10% strain and retaining its integrity without any void formation at the interface. On the other hand, multilayered Cu6Sn5/Cu3Sn/Cu micropillars undergo plastic deformation through slip deformation at Cu substrate, suggesting sufficient strength of intermetallic compounds and the interfaces. These results are beneficial in evaluation of validity and reliability of 3D IC micro-joints for chip-stacking applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:06:37Z (GMT). No. of bitstreams: 1 ntu-108-F03527016-1.pdf: 8027562 bytes, checksum: beba3e867f5599b62dcf39ae96b84a8c (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Contents iv List of Figures vii List of Tables xvii Chapter 1 Introduction 1 1-1 3D IC technology 1 1-2 Transition from flip-chip joint to 3D IC micro joint 4 1-3 Microstructure evolution in solder joint 8 Chapter 2 Literature Reviews 9 2-1 Nanoindentation 9 Measurement techniques 10 Analytical approach 12 Limitations and challenges 14 2-2 Micropillar compression 16 Micropillar fabrication 19 2-3 Review on properties of Cu6Sn5 21 Crystal structure and phase diagram 22 Mechanical properties 26 Alloying effect 28 Chapter 3 Research Objectives 32 3-1 Mechanical behaviors of single crystalline Cu6Sn5 32 3-2 Interface plasticity in multilayered structure 34 Chapter 4 Experimental 36 4-1 Material and sample preparation 36 4-2 EBSD analysis 38 4-3 Micropillar fabrication 41 4-4 Multilayered structure sample preparation 44 4-5 Micropillar compression test 49 4-6 Nanoindentation 50 Chapter 5 Results and Discussion 51 5-1 Calibration approach 51 5-2 Interpretation of typical stress-strain curve 55 5-3 Strain burst 58 5-4 Anisotropic mechanical behaviors of Cu6Sn5 66 5-5 Cleavage fracture of Cu6Sn5 71 5-6 The effect of Ni addition 75 Phase stabilization 76 Strengthening effect 80 5-7 Interface strength in multilayered structures 83 Micropillar compression on Cu6Sn5/Cu6Sn5 83 Micropillar compression on Cu6Sn5/Cu3Sn 89 Micropillar compression on Cu6Sn5/Sn/Cu6Sn5 93 Micropillar compression on Cu6Sn5/Cu3Sn/Cu 101 Chapter 6 Conclusions 103 References 105 | |
| dc.language.iso | en | |
| dc.subject | 微銲點 | zh_TW |
| dc.subject | 介金屬 | zh_TW |
| dc.subject | 三維積體電路 | zh_TW |
| dc.subject | 奈米壓痕試驗 | zh_TW |
| dc.subject | 微米柱壓縮測試 | zh_TW |
| dc.subject | Micropillar Compression | en |
| dc.subject | Micro Joints | en |
| dc.subject | Intermetallic Compound | en |
| dc.subject | 3D IC | en |
| dc.subject | Nanoindentation | en |
| dc.title | 以微米柱壓縮試驗探討三維積體電路微銲點中Cu6Sn5之機械行為 | zh_TW |
| dc.title | Mechanical Behaviors of Cu6Sn5 in 3D IC Micro Joints
Using Micropillar Compression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳子嘉,何政恩,陳志銘,林士剛 | |
| dc.subject.keyword | 三維積體電路,微銲點,微米柱壓縮測試,奈米壓痕試驗,介金屬, | zh_TW |
| dc.subject.keyword | 3D IC,Micro Joints,Micropillar Compression,Nanoindentation,Intermetallic Compound, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU201901885 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 7.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
