請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72691
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘敏雄 | |
dc.contributor.author | Yu-Hsin Wang | en |
dc.contributor.author | 王宇昕 | zh_TW |
dc.date.accessioned | 2021-06-17T07:03:43Z | - |
dc.date.available | 2024-08-07 | |
dc.date.copyright | 2019-08-07 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-29 | |
dc.identifier.citation | 李沛珊、田伶任、張銀戀、何源興 (2016)。深層海水培育錐尖擬紅翎藻初探。行政院農委會水產試驗所水試專訊,(056),28-30。
教育部統計處 (2017)。國中、小體位趨勢。性別統計指標彙總性資料。取自:https://depart.moe.edu.tw/ED4500/cp.aspx?n=C1EE66D2D9BD36A5 衛生福利部國民健康署 (2016)。成人健康體重標準。取自:https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=705 衛生福利部國民健康署 (2018)。健康的生活。國民健康署年報,42。 蘇惠美、張銀戀、黃維能、陳紫媖 (2014)。錐尖擬紅翎藻技術開發。行政院農委會水產試驗所年報,28。 羅慧珍、劉珍芳、賴春宏、曾明淑 (2018)。膳食營養素參考攝取量。衛生福利部國民健康署草案,3-35。 Apovian, C. M., Aronne, L. J., Bessesen, D. H., McDonnell, M. E., Murad, M. H., Pagotto, U., Still, C. D. (2015). Pharmacological management of obesity: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 100(2), 342-362. Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J. i., Miyaoka, K. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and biophysical research communications, 257(1), 79-83. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. Chandran, M., Phillips, S. A., Ciaraldi, T., Henry, R. R. (2003). Adiponectin: more than just another fat cell hormone? Diabetes care, 26(8), 2442-2450. Chiu, C. Y., Feng, S. A., Liu, S.-H., Chiang, M. T. (2017). Functional comparison for lipid metabolism and intestinal and fecal microflora enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Marine drugs, 15(7), 234. Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I., Kim, J. B. (2016). Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in endocrinology, 7, 30. Choi, S.-S., Park, J., Choi, J. H. (2014). Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB reports, 47(11), 599. Daval, M., Foufelle, F., Ferré, P. (2006). Functions of AMP‐activated protein kinase in adipose tissue. The Journal of physiology, 574(1), 55-62. Deji, N., Kume, S., Araki, S.-i., Soumura, M., Sugimoto, T., Isshiki, K., Haneda, M. (2009). Structural and functional changes in the kidneys of high-fat diet-induced obese mice. American Journal of Physiology-Renal Physiology, 296(1), F118-F126. Delzenne, N. M., Olivares, M., Neyrinck, A. M., Beaumont, M., Kjølbæk, L., Larsen, T. M., Bosscher, D. (2019). Nutritional interest of dietary fiber and prebiotics in obesity: lessons from the MyNewGut consortium. Clinical Nutrition. Deng, T., Shan, S., Li, P. P., Shen, Z. F., Lu, X. P., Cheng, J., Ning, Z. Q. (2006). Peroxisome proliferator-activated receptor-γ transcriptionally up-regulates hormone-sensitive lipase via the involvement of specificity protein-1. Endocrinology, 147(2), 875-884. Di Spiezio, A., Sandin, E. S., Dore, R., Müller-Fielitz, H., Storck, S. E., Bernau, M., Pietrzik, C. U. (2018). The LepR-mediated leptin transport across brain barriers controls food reward. Molecular metabolism, 8, 13-22. Fasshauer, M., Blüher, M. (2015). Adipokines in health and disease. Trends in pharmacological sciences, 36(7), 461-470. Folch, J., Lees, M., Sloane Stanley, G. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R. S., Yen, F. T., Lodish, H. F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences, 98(4), 2005-2010. Gómez-Ordóñez, E., Jiménez-Escrig, A., Rupérez, P. (2012). Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats. Food chemistry, 135(2), 806-811. Grant, D. (1991). Detoxification pathways in the liver Journal of inherited metabolic disease (pp. 421-430): Springer. Gurula, H., Loganathan, T., Krishnamoorthy, T. (2015). Virtual screening studies of seaweed metabolites for predicting potential PPARγ agonists. International Journal of Pharmacy and Pharmaceutical Sciences, 7(10), 268-271. Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Eder, S. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science, 312(5774), 734-737. Han, S. F., Jiao, J., Zhang, W., Xu, J. Y., Zhang, W., Fu, C. L., Qin, L. Q. (2017). Lipolysis and thermogenesis in adipose tissues as new potential mechanisms for metabolic benefits of dietary fiber. Nutrition, 33, 118-124. Hildreth, H. G., Johnson, R. K. (1995). The doubly labeled water technique for the determination of human energy requirements. Nutrition Today, 30(6), 254-260. Horton, J. D., Shimomura, I., Ikemoto, S., Bashmakov, Y., Hammer, R. E. (2003). Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. Journal of Biological Chemistry, 278(38), 36652-36660. Hotta, K., Funahashi, T., Bodkin, N. L., Ortmeyer, H. K., Arita, Y., Hansen, B. C., Matsuzawa, Y. (2001). Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 50(5), 1126-1133. Hudak, C. S., Sul, H. S. (2013). Pref-1, a gatekeeper of adipogenesis. Frontiers in endocrinology, 4, 79. Hung, C. Y., Chang, C. W., Chen, C. J., Chang, C. W., Cheng, H.-Y., Chen, M. J. (2018). Sonographic Measurement of Visceral Fat and Prediction of Metabolic Syndrome in the Elderly. International Journal of Gerontology, 12(4), 331-335. Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A. E., Periwal, V. (2009). Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS computational biology, 5(3), e1000324. Kang, J. H., Lee, H. A., Kim, H. J., Han, J. S. (2017). Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice. Nutrition Research and Practice, 11(1), 17-24. Kang, M. C., Kang, N., Kim, S. Y., Lima, I. S., Ko, S. C., Kim, Y. T., Jeon, Y. J. (2016). Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity. Food and Chemical Toxicology, 90, 181-187. Kang, M. C., Kang, N., Ko, S. C., Kim, Y. B., Jeon, Y. J. (2016). Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet. Food and Chemical Toxicology, 90, 36-44. Kersten, S. (2001). Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO reports, 2(4), 282-286. Khalid, S., Abbas, M., Saeed, F., Bader-Ul-Ain, H., Suleria, H. A. R. (2018). Therapeutic Potential of Seaweed Bioactive Compounds Seaweed Biomaterials: IntechOpen. Kim, J. Y., Kwon, Y. M., Kim, I. S., Kim, J. A., Yu, D. Y., Adhikari, B., Cho, K. K. (2018). Effects of the brown seaweed Laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats. Frontiers in Nutrition, 5. Kim, K., Nam, K., Kurihara, H., Kim, S. (2008). Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 69(16), 2820-2825. Kim, M. J., Jeon, J., Lee, J. S. (2014). Fucoidan prevents high‐fat diet‐induced obesity in animals by suppression of fat accumulation. Phytotherapy Research, 28(1), 137-143. Kimura, M., Iida, M., Yamauchi, H., Suzuki, M., Shibasaki, T., Saito, Y., Saito, H. (2014). Astaxanthin supplementation effects on adipocyte size and lipid profile in OLETF rats with hyperphagia and visceral fat accumulation. Journal of functional foods, 11, 114-120. Kishino, E., Ito, T., Fujita, K., Kiuchi, Y. (2006). A mixture of the Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet–induced obesity. The Journal of nutrition, 136(2), 433-439. Lass, A., Zimmermann, R., Oberer, M., Zechner, R. (2011). Lipolysis–a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Progress in lipid research, 50(1), 14-27. Lee, J., Kang, S., Choi, S., Song, C., Lee, Y., Ku, S. (2015). Fermentation of green tea with 2% Aquilariae lignum increases the anti-diabetic activity of green tea aqueous extracts in the high fat-fed mouse. Nutrients, 7(11), 9046-9078. Lefterova, M. I., Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology & Metabolism, 20(3), 107-114. Li, S., Li, J., Zhi, Z., Hu, Y., Ge, J., Ye, X., Chen, S. (2017). 4-O-Sulfation in sea cucumber fucodians contribute to reversing dyslipidiaemia caused by HFD. International journal of biological macromolecules, 99, 96-104. Li, Z., Ji, G. E. (2018). Ginseng and obesity. Journal of ginseng research, 42(1), 1-8. Liang, H., Yin, B., Zhang, H., Zhang, S., Zeng, Q., Wang, J., Li, Z. (2008). Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-α signaling protected Wistar rats from diet-induced obesity and insulin resistance. Endocrinology, 149(6), 2943-2951. Liese, A. D., Schulz, M., Fang, F., Wolever, T. M., D’Agostino, R. B., Sparks, K. C., Mayer-Davis, E. J. (2005). Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis Study. Diabetes care, 28(12), 2832-2838. Ludwig, D. S. (2002). The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Jama, 287(18), 2414-2423. Luo, L., Liu, M. (2016). Adipose tissue in control of metabolism. Journal of Endocrinology, 231(3), R77-R99. MacPherson, R. E., Dragos, S. M., Ramos, S., Sutton, C., Frendo-Cumbo, S., Castellani, L., Wright, D. C. (2016). Reduced ATGL-mediated lipolysis attenuates beta adrenergic induced AMPK signaling but not the induction of PKA targeted genes in adipocytes and adipose. American Journal of Physiology-Cell Physiology. Mebius, R. E., Kraal, G. (2005). Structure and function of the spleen. Nature reviews immunology, 5(8), 606. Mohamed, G. A., Ibrahim, S. R., Elkhayat, E. S., El Dine, R. S. (2014). Natural anti-obesity agents. Bulletin of Faculty of Pharmacy, Cairo University, 52(2), 269-284. Muir, L. A., Neeley, C. K., Meyer, K. A., Baker, N. A., Brosius, A. M., Washabaugh, A. R., Flesher, C. G. (2016). Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity, 24(3), 597-605. Nguyen, C. T., Zhou, S., Shanahan, W., Fain, R. (2016). Lorcaserin in obese and overweight patients taking prohibited serotonergic agents: a retrospective analysis. Clinical therapeutics, 38(6), 1498-1509. Nielsen, T. S., Jessen, N., Jørgensen, J. O. L., Møller, N., Lund, S. (2014). Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. Journal of molecular endocrinology, 52(3), R199-R222. Niu, M., Xiang, L., Liu, Y., Zhao, Y., Yuan, J., Dai, X., Chen, H. (2017). Adiponectin induced AMP-activated protein kinase impairment mediates insulin resistance in Bama mini-pig fed high-fat and high-sucrose diet. Asian-Australasian journal of animal sciences, 30(8), 1190. Odamaki, M., Furuya, R., Ohkawa, S., Yoneyama, T., Nishikino, M., Hishida, A., Kumagai, H. (1999). Altered abdominal fat distribution and its association with the serum lipid profile in non-diabetic haemodialysis patients. Nephrology Dialysis Transplantation, 14(10), 2427-2432. Piao, Y., Liu, Y., Xie, X. (2013). Change trends of organ weight background data in Sprague Dawley rats at different ages. Journal of toxicologic pathology, 26(1), 29-34. Quiroga, A. D., Lehner, R. (2012). Liver triacylglycerol lipases. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(5), 762-769. Rönn, M., Lind, P. M., Karlsson, H., Cvek, K., Berglund, J., Malmberg, F., Kullberg, J. (2013). Quantification of total and visceral adipose tissue in fructose‐fed rats using water‐fat separated single echo MRI. Obesity, 21(9), E388-E395. Rader, D. J., deGoma, E. M. (2012). Approach to the patient with extremely low HDL-cholesterol. The Journal of Clinical Endocrinology & Metabolism, 97(10), 3399-3407. Rico, D., Diana, A. B. M., Milton-Laskibar, I., Fernández-Quintela, A., Silván, J. M., Rai, D. K., Martínez-Villaluenga, C. (2018). Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. Journal of functional foods, 46, 185-194. Roberts, R., Hodson, L., Dennis, A., Neville, M., Humphreys, S., Harnden, K., Frayn, K. (2009). Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia, 52(5), 882. Rodríguez, A., Catalán, V., Becerril, S., Gil, M. J., Mugueta, C., Gómez-Ambrosi, J., Frühbeck, G. (2008). Impaired adiponectin-AMPK signalling in insulin-sensitive tissues of hypertensive rats. Life sciences, 83(15-16), 540-549. Rolls, B. J., Ello-Martin, J. A., Tohill, B. C. (2004). What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutrition reviews, 62(1), 1-17. Rosen, E. D., Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444(7121), 847. Ross, A. M., Eastwood, M. A., Brydon, W. G., Anderson, J., Anderson, D. M. (1983). A study of the effects of dietary gum arabic in humans. The American journal of clinical nutrition, 37(3), 368-375. Rupasinghe, H. V., Sekhon-Loodu, S., Mantso, T., Panayiotidis, M. I. (2016). Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacology & therapeutics, 165, 153-163. Sarjeant, K., Stephens, J. M. (2012). Adipogenesis. Cold Spring Harbor perspectives in biology, 4(9), a008417. Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., Zimmermann, R. (2006). Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. Journal of Biological Chemistry, 281(52), 40236-40241. Seca, A., Pinto, D. (2018). Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Marine drugs, 16(7), 237. Sekiya, M., Yahagi, N., Matsuzaka, T., Takeuchi, Y., Nakagawa, Y., Takahashi, H., Gotoda, T. (2007). SREBP-1-independent regulation of lipogenic gene expression in adipocytes. Journal of lipid research, 48(7), 1581-1591. Sponarova, J., Mustard, K. J., Horakova, O., Flachs, P., Rossmeisl, M., Brauner, P., Janovska, P. (2005). Involvement of AMP‐activated protein kinase in fat depot‐specific metabolic changes during starvation. FEBS letters, 579(27), 6105-6110. Tanaka, T., Yoshida, N., Kishimoto, T., Akira, S. (1997). Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. The EMBO journal, 16(24), 7432-7443. Torres-Fuentes, C., Schellekens, H., Dinan, T. G., Cryan, J. F. (2015). A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutritional neuroscience, 18(2), 49-65. Trayhurn, P., Beattie, J. H. (2001). Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society, 60(3), 329-339. Trouwborst, I., Bowser, S. M., Goossens, G. H., Blaak, E. E. (2018). Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions. Frontiers in nutrition, 5, 77. Wang, Q. A., Tao, C., Gupta, R. K., Scherer, P. E. (2013). Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature medicine, 19(10), 1338. Wang, W., Zhang, P., Yu, G.-L., Li, C.-X., Hao, C., Qi, X., Guan, H.-S. (2012). Preparation and anti-influenza A virus activity of κ-carrageenan oligosaccharide and its sulphated derivatives. Food chemistry, 133(3), 880-888. Wang, Z. Q., Yu, Y., Zhang, X. H., Floyd, Z. E., Boudreau, A., Lian, K., Cefalu, W. T. (2012). Comparing the effects of nano-sized sugarcane fiber with cellulose and psyllium on hepatic cellular signaling in mice. International journal of nanomedicine, 7, 2999. Wanyonyi, S., du Preez, R., Brown, L., Paul, N. A., Panchal, S. K. (2017). Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients, 9(11). World health organization (WHO) (2018). Obesity and overweight. Xavier, N. P., Chaim, R. C., Gimeno, S. G. A., Ferreira, S. R. G., Hirai, A. T., Rosa, C. M., Okoshi, K. (2012). Prevalence of metabolic syndrome in elderly Japanese-Brazilians. Medical science monitor: international medical journal of experimental and clinical research, 18(2), PH1. Yamauchi, T., Kamon, J., Minokoshi, Y. a., Ito, Y., Waki, H., Uchida, S., Ueki, K. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine, 8(11), 1288. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Tsunoda, M. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762. Yamauchi, T., Kamon, J., Waki, H., Imai, Y., Shimozawa, N., Hioki, K., Matsui, J. (2003). Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. Journal of Biological Chemistry, 278(4), 2461-2468. Yang, T. H., Yao, H. T., Chiang, M. T. (2015). Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide. journal of food and drug analysis, 23(4), 758-765. Yang, T. H., Yao, H. T., Chiang, M. T. (2017). Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. J Food Drug Anal, 25(4), 931-938. Yoon, M. J., Lee, G. Y., Chung, J.-J., Ahn, Y. H., Hong, S. H., Kim, J. B. (2006). Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator–activated receptor α. Diabetes, 55(9), 2562-2570. Yuan, X., Wei, G., You, Y., Huang, Y., Lee, H. J., Dong, M., Zhang, C. (2016). Rutin ameliorates obesity through brown fat activation. The FASEB Journal, 31(1), 333-345. Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R., Lass, A. (2009). Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. Journal of lipid research, 50(1), 3-21. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72691 | - |
dc.description.abstract | 肥胖人口於開發中及已開發國家與日俱增,因而使相關代謝疾病發生率居高不下。然而,臨床研究結果顯示,亞洲國家如韓國、日本等地的人口罹患代謝症候群機率遠低於西方國家,進而發現其餐桌飲食普遍存在著多種藻類。其中,數種紅藻具有豐富的活性成分,且對於抗肥胖及相關代謝疾病極具潛力。因此,本研究樣品為錐尖擬紅翎藻 (Agardhiella subulata, AS),屬紅藻門 (Rhodophyta),含有豐富的生物活性成分,多醣類、必需胺基酸、礦物質、蝦紅素、不飽和脂肪酸及低的熱量密度。錐尖擬紅翎藻目前為台灣東部沿岸居民、日本的食用海藻,但還未被探討過其是否能減緩肥胖的發生。本次實驗將 4 周齡 C57BL/6 小鼠分為四個組別,正常飲食組 (ND);高脂飲食組 (50% fat,HFD);高脂飲食組混合低劑量紅藻粉末 (2% AS,ASL);高脂飲食組混合高劑量紅藻粉末 (10% AS,ASH)。實驗中飲食及飲水皆為自由攝食,為期13周。13周犧牲後,與HFD組別相比,紅藻組別在不改變攝食量的情況下,皆顯著減緩高脂飲食誘導肥胖小鼠之體重,切片結果則顯示體重的降低可能來自於抑制了肝臟及內臟脂肪的蓄積,且紅藻也能夠改善高脂飲食所誘導血脂紊亂的問題。糞便分析結果顯示,與 HFD 組相比,ASH 組具有代謝多餘三酸甘油酯的效果。進一步探討體內之分子機制,發現紅藻組別顯著提高脂解作用及脂肪酸 β-氧化的作用,顯示促進游離脂肪酸的利用而使血液中 NEFA 的含量降低。另外,紅藻具有提高 Pref1、SOX9 的蛋白表現量而抑制脂肪細胞的新生,並發現可能含有 PPARγ 激動劑的存在而提升血液中 adiponectin 的濃度進而調節血糖。綜合上述結果,紅藻除了增加油脂的排出,還具有抑制脂肪細胞的新生及提升能量代謝的作用而減少脂質於體內的堆積,因此具有減緩肥胖發生的潛力。 | zh_TW |
dc.description.abstract | An increase of obesity is not only in developed countries but also in developing nations making high prevalence rate of related metabolic diseases. However, incidence of cardiovascular and metabolic disorders was relatively low in Korea, Japan relative to Western countries. Meanwhile, study found that red algae contain variety of bioactive components and have great potential for anti-obesity and related metabolic diseases among several algae that are frequently consumed by Asian populations. In this study, the red seaweed Agardhiella subulata, rich in bioactive components including polysaccharide, essential amino acid, minerals, astaxanthin, unsaturated fatty acid with low overall energy content for whole seaweed was used. Regular consumption of AS in Japan and northern Taiwan but their anti-obesity activity remains unexplored. Four-week-old C57BL/6 mice were used as the experimental animals. Mice were divided into four groups: (1) normal diet group (ND); (2) high-fat diet group (50% fat, HFD); (3) HFD with low dose of AS diet group (2% AS, ASL); (4) HFD with high dose of AS diet group (10% AS, ASH). All groups were fed the experimental diets and drinking water ad libitum for 13 weeks. After 13 weeks of AS supplementation, significantly reduced HFD-induced body weight without altering the amount of food intake. The results of the H&E stain showed that it may be derived from inhibiting the accumulation of lipids in the liver and visceral fat. AS supplementation also improved the lipid profile compared to HFD group. In addition, fecal triglyceride excretion was significantly higher in mice fed 10% AS group. Moreover, we found that AS feeding induce lipolysis and fatty acid β-oxidation which associated with the lower concentration of NEFA compared to HFD group. Also, AS could alleviated hyperplasia through upregulating protein expression of Pref1 and SOX9. Interestingly, higher protein level of PPARγ in AS group, so we guess PPARγ agonist that include in and elevate adiponectin level to improve blood glucose. The results of the current study suggest that AS supplementation not only increasing lipid excretion, but improving energy metabolism and adipogenesis to prevent obesity in high-fat diet fed mice. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:03:43Z (GMT). No. of bitstreams: 1 ntu-108-R06641032-1.pdf: 3645394 bytes, checksum: 221fbc134b93eef3b435e6dd8b37172c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
謝誌 I 中文摘要 III Abstract IV 目錄 VI 附圖目錄 IX 附表目錄 X 圖目錄 XI 表目錄 XII 縮寫表 XIII 第一章、文獻回顧 1 第一節、肥胖 (Obesity) 1 1.1.1 簡介 1 1.1.2 定義 1 1.1.3 肥胖的成因及危害 2 1.1.4 預防及治療 3 第二節、脂肪組織 (Adipose tissue) 5 1.2.1 功能介紹 5 1.2.2 脂肪細胞激素介紹 6 第三節、調控脂肪細胞大小及數量之相關路徑 8 1.3.1 脂肪細胞新生 (Adipogenesis) 8 1.3.2 脂肪生成 (Lipogenesis) 10 1.3.3 脂肪分解 (Lipolysis) 12 1.3.4 脂肪酸 β 氧化 (β-oxidation) 14 1.3.5 5′–AMP-activated protein kinase (AMPK) 路徑 16 第四節、錐尖擬紅翎藻 (Agardhiella subulata, AS) 18 1.4.1 海藻簡介 18 1.4.2 紅藻之活性成分及功效 19 1.4.3 錐尖擬紅翎藻 (Agardhiella subulata) 19 第二章、實驗目的與架構 21 第一節、實驗目的 21 第二節、實驗架構 22 第三章、材料與方法 23 第一節、實驗材料 23 3.1.1 儀器設備 23 3.1.2 試劑藥品 24 第二節、樣品來源及製備 25 3.2.1 紅藻樣品 25 第三節、動物實驗方法 25 3.3.1 動物品系與飼養環境 25 3.3.2 組別設計 26 3.3.3 飼料配製 28 3.3.4 動物犧牲 29 3.3.5 H&E 染色 (Hematoxylin & Eosin stain) 29 3.3.6 糞便脂質含量測定 32 3.3.7 肝臟三酸甘油酯含量測定 32 3.3.8 非酯化脂肪酸 (NEFA) 含量測定 33 3.3.9 血清脂聯素 (Adiponectin) 含量測定 34 3.3.10 蛋白質萃取 34 3.3.11 蛋白質定量 35 3.3.12 西方墨點法 (Western blotting) 36 3.3.13 血糖測定 39 第四節、統計分析 40 第四章、結果與討論 41 第一節、AS 對餵食高脂飲食 C57BL/6 小鼠外觀差異及體重之影響 41 第二節、AS 對餵食高脂飲食 C57BL/6 小鼠攝食量及攝食效率之影響 42 第三節、AS 對餵食高脂飲食 C57BL/6 小鼠臟器外觀及重量之影響 43 第四節、AS 對餵食高脂飲食 C57BL/6 小鼠肝臟組織切片及三酸甘油酯含量之影響 44 第五節、AS 對餵食高脂飲食 C57BL/6 小鼠脂肪組織重量、脂肪率及脂肪細胞大小之影響 45 第六節、AS 對餵食高脂飲食 C57BL/6 小鼠血清生化數值之影響 47 第七節、AS 對餵食高脂飲食 C57BL/6 小鼠糞便中 TG、TC 含量之影響 48 第八節、AS 對餵食高脂飲食 C57BL/6 小鼠 Adiponectin 之影響 50 第九節、AS 對餵食高脂飲食 C57BL/6 小鼠脂解作用之影響 50 第十節、AS 對餵食高脂飲食 C57BL/6 小鼠脂肪酸 β-氧化之影響 51 第十一節、AS 對餵食高脂飲食 C57BL/6 小鼠脂肪細胞新生之影響 52 第十二節、AS 對餵食高脂飲食 C57BL/6 小鼠 PPARγ之影響 53 第十三節、AS 對餵食高脂飲食 C57BL/6 小鼠血糖及相關蛋白表現之影響 53 第五章、結論 55 第六章、圖表 56 參考文獻 74 附錄 83 | |
dc.language.iso | zh-TW | |
dc.title | 錐尖擬紅翎藻抑制高脂飲食誘導小鼠肥胖之分子機制 | zh_TW |
dc.title | Molecular mechanisms of the anti-obesity of Agardhiella subulata in high-fat diet fed mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王應然,何元順,黃步敏,廖秀娟 | |
dc.subject.keyword | 錐尖擬紅翎藻,肥胖,C57BL/6,高脂飲食,脂解作用,β 氧化,脂肪細胞新生, | zh_TW |
dc.subject.keyword | Agardhiella subulata,obesity,C57BL/6,high-fat diet,lipolysis,β-oxidation,adipogenesis, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU201902110 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。