Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72396Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 顏鴻威 | |
| dc.contributor.author | Mei-Chun Lin | en |
| dc.contributor.author | 林美均 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:39:54Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | [1] P. VA., Phys Met and Metallogr, 67 (1989) 924.
[2] R. VV., Large plastic deformations and destruction of metals, Metallurgia (1987). [3] X. An, S. Wu, Z. Zhang, R. Figueiredo, N. Gao, T. Langdon, Evolution of microstructural homogeneity in copper processed by high-pressure torsion, Scripta Materialia 63(5) (2010) 560-563. [4] Vorhauer A, P. R., Scripta Mater (2004) 51:921. [5] Zhilyaev AP, Oh-ishi K, Langdon TG, M. TR., Mater Sci Eng (2005) A410–411:277. [6] A.P. Zhilyaev, T.G. Langdon, Progress in Materials Science 53 (2008) 893–979. [7] Smith, Hashemi, (2006) p.242. [8] Valiev RZ, Korznikov AV, M. RR., Mater Sci Eng A (1993) 168:141. [9] Valiev RZ, Alexandrov IV, I. RK, Nanocrystalline materials: science and technology, (1998) p. 121. [10] Valiev RZ, L. TG, Prog Mater Sci (2006) 51:881. [11] Saito Y, Tsuji N, Utsunomiya H, Sakai T, H. RG, S.M. 1998;39:1221., (Scripta Mater) (1998) 39-1221. [12] Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Davydova LS, S. VA., Fiz Metal Metalloved (1986). [13] R. Song, Materials Science and Engineering A (2006) 1-17. [14] T. Sakai, Progress in Materials Science (2014) 153. [15] R. Kaspar, J.S. Distl, O. Pawelski, Steel Res (1988) 421. [16] P.D. Hodgson, M.R. Hickson, R.K. Gibbs, Ultrafine ferrite in low carbon steel, Scripta Materialia 40(10) (1999) 1179-1184. [17] H. Mabuchi, T. Hasegawa, T. Ishikawa, ISIJ Int 39 (1999) 477. [18] Z.M. Yang, R.Z. Wang, ISIJ Int. 43 (2003) 761. [19] J.K. Choi, D.H. Seo, J.S. Lee, K.K. UM, W.Y. Choo, ISIJ Int. 43 (2003) 764. [20] M.R.Hickson, P.J.Hurley, R.K.Gibbs, G.L.Kelly, P.D.Hodgson, Metall.Mater. Trans. A 33 (2002) 1019. [21] S.C. Hong, S.H. Lim, K.J. Lee, D.H. Shin, K.S. Lee, ISIJ Int. 43. [22] Y. Matsumura, H. Yada, ISIJ Int. 27 (1987) 492. [23] A. Najafi-Zadeh, J.J. Jonas, S. Yue, Metall. Trans. A 23 (1992) 2607. [24] N. Tsuji, Y. Matsubara, Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel, Scripta Materialia 37(4) (1997) 477-484. [25] S.V.S.N. Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo, Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel, Scripta Materialia 53(6) (2005) 763-768. [26] J. Baczynski, J.J. Jonas, Metall. Trans. A 29 (1998) 447. [27] Y. Weng, ISIJ Int. 43 (2003) 1675. [28] R. Song, D. Ponge, D. Raabe, R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing, Acta Materialia 53(3) (2005) 845-858. [29] R. Song, R. Kaspar, D. Ponge, D. Raabe, Ultrafine Grained Materials vol. III (2004) p.445. [30] R. Song, D. Ponge, R. Kaspar, D. Raabe, Z. Metallkd 95 (2004) 513. [31] R. Song, D. Ponge, D. Raabe, Improvement of the work hardening rate of ultrafine grained steels through second phase particles, Scripta Materialia 52(11) (2005) 1075-1080. [32] R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing, Acta Materialia 53(18) (2005) 4881-4892. [33] Y.I. Son, Y.K. Lee, K.-T. Park, C.S. Lee, D.H. Shin, Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties, Acta Materialia 53(11) (2005) 3125-3134. [34] G. Azevedo, R. Barbosa, E.V. Pereloma, D.B. Santos, Development of an ultrafine grained ferrite in a low C–Mn and Nb–Ti microalloyed steels after warm torsion and intercritical annealing, Materials Science and Engineering: A 402(1) (2005) 98-108. [35] K.T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, K.K. Um, Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing, Scripta Materialia 51(9) (2004) 909-913. [36] R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite, Acta Materialia 50(16) (2002) 4177-4189. [37] N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property, Scripta Materialia 46(4) (2002) 305-310. [38] R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure, Science and technology of advanced materials 5(1-2) (2004) 153-162. [39] Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, N. Tsuji, Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure, Metallurgical and Materials Transactions A 45(12) (2014) 5300-5304. [40] A. Martı́nez-de-Guerenu, F. Arizti, M. Dı́az-Fuentes, I. Gutiérrez, Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructural characterization, Acta Materialia 52(12) (2004) 3657-3664. [41] N. Hansen, Cold deformation microstructures, Materials Science and Technology 6(11) (1990) 1039-1047. [42] R.G. Bruna, Efeitos dos laminados a quente e a morno na microestrutura, textura e propriedades de aços baixo carbono, Rem: Revista Escola de Minas 64 (2011) 57-62. [43] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, (1995) p. 2. [44] J.A. Ewing, W. Rosenhain, Phil. Trans. R. Soc. A193 (1899) pp. 353-75. [45] H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: II – annealing behaviour, Acta Materialia 52(11) (2004) 3251-3262. [46] Y.S. Cho, J.S. Kim, O. Engler, M.Y. Huh, Effect of lubrication on the evolution of through-thickness texture gradients in cold rolled and recrystallized low carbon steel, Zeitschrift für Metallkunde 90(2) (1999) 124-131. [47] H. Hallberg, F. Adamski, S. Baïz, O. Castelnau, Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing, Metallurgical and Materials Transactions A 48(10) (2017) 4786-4802. [48] B. PW, (J Appl Phys) (1943) 14-273. [49] Z. AP, N. GV, B.M. Kim BK, S. JA, L. TG, (Acta Mater) (2003). [50] Valiev RZ, Ivanisenko YuV, Rauch EF, B. B, Acta Mater (1996). [51] Wetscher F, Vorhauer A, Stock R, Mater Sci Eng A (2004) 387–389. [52] Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, D. G., Metall Mater Trans (1963). [53] R.Z. Valiev, Progress in Materials Science 45 (2000) 103±189. [54] Gil Sevillano J, van Houtte P, A. E., Large strain work hardening and textures, 25(Prog Mater Sci ) (1980) 69-412. [55] Bay B, Hansen N, Hughes DA, K.-W. D., Evolution of f.c.c. deformation structures in polyslip, (Acta Metall Mater ) (1992) 40L205. [56] X.H. An, 109(Acta Materialia ) (2016) 300-313. [57] R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater Res 40 (2010) 319-343. [58] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of micro- structural evolution during equal-channel angular pressing, Acta Mater. 45 (1997) 4733-4741. [59] Yuki Ito, Z. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Materials Science and Engineering A 503 (2009) 32-36. [60] Jiang H, Zhu YT, Butt DP, Alexandrov IV, L. TC., (Mater Sci Eng A) (2000) 290:128. [61] Jiang H, Zhu YT, Butt DP, Alexandrov IV, L. TC, Mater Sci Eng (2000) A290:128. [62] Yang Z, W. U, Mater Lett (2005) 59:3406. [63] Sakai G, Horita Z, L. TG, Mater Sci Eng A (2005) 393:344. [64] Horita Z, L. TG, Mater Sci Eng (2005) A410–411:422. [65] Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, L. TG, (Acta Mater) (2003) 51:753. [66] Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, L. TG, Scripta Mater (44:2753) (2001). [67] Xu C, Horita Z, L. TG, Acta Mater. (2007) 55:203. [68] M. Kawasaki, B. Ahn, T.G. Langdon, Significance of strain reversals in a two-phase alloy processed by high-pressure torsion, Materials Science and Engineering: A 527(26) (2010) 7008-7016. [69] K. M, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion., J Mater Sci (2014) 49:18-34. [70] M. Kawasaki, B. Ahn, T.G. Langdon, Microstructural evolution in a two-phase alloy processed by high-pressure torsion, Acta Materialia 58(3) (2010) 919-930. [71] N.X. Zhang, M. Kawasaki, Y. Huang, T.G. Langdon, Microstructural evolution in two-phase alloys processed by high-pressure torsion, Journal of Materials Science 48(13) (2013) 4582-4591. [72] T.-S. Cho, H.-J. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Microstructural evolution and mechanical properties in a Zn–Al eutectoid alloy processed by high-pressure torsion, Acta Materialia 72 (2014) 67-79. [73] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Fabrication of submicrometer-grained Zn–22% Al by torsion straining, Journal of Materials Research 11(9) (2011) 2128-2130. [74] D.V. Edmonds , R.W.K. Honeycombe, Precipitation Process in Solids, (The Metallurgical Society of AIME) (1976) 121. [75] C.-Y.Y. Huang, Hung-Wei & Pan, Y.-T & Yang, Jer-Ren, Development of nano-size precipitation strengthening hot-rolled automobile steels, (AISTech - Iron and Steel Technology Conference Proceedings) (2010) 849-857. [76] J.M. Gray, Yeo, R. B. G., Niobium carbonitride precipitation in low-alloy steels with particular emphasis on precipitate-row formation, Trans. ASM 61(2) (1968) 255-269. [77] A.D. Batte, H. Rw, PRECIPITATION OF VANADIUM CARBIDE IN FERRITE, The Journal of the Iron and Steel Institute 211(APR) (1973) 284-289. [78] M. Mannerkoski, ( Acta Polytech) (1964). [79] R.G.B.Y. J.M. Gray, Transactions of American Society for Metals, 61 (1968) 255-269. [80] S. Freeman, Effect of second-phase particles on the mechanical properties of steel, (Iron and Steel Institute) (1971) 152. [81] R.W.K.H. A.T. Davenport, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 322 (1971) 191-205. [82] 顏鴻威, 先進超高強度奈米碳化物介面析出之穿透式電子顯微鏡分析研究,博士論文, (2011). [83] R.M. Smith, D.P. Dunne, Structural aspects of alloy carbonitride precipitation in microalloyed steels, Materials Forum 11 (1988) 166. [84] H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Materialia 59 (2011) 6264. [85] A.T. Davenport, R.W.K. Honeycombe, Precipitation of Carbides at gamma-alpha Boundaries in Alloy Steels, Proceedings of the Royal Society A 322(1549) (1971) 191. [86] H.I. Aaronson, V.F. Zackay, Decomposition of Austenite by Diffusional Processes, Interscience Publishers1962. [87] R.W.K. Honeycombe, R.F. Mehl, Transformation from austenite in alloy steels, Metallurgical Transactions A 7(7) (1976) 915-936. [88] R.A. Ricks, P.R. Howell, Bowing mechanism for interphase boundary migration in alloy steels, Metal Science 16(6) (1982) 317. [89] R.A. Ricks, P.R. Howell, The formation of discrete precipitate dispersions on mobile interphase boundaries in iron-base alloys, Acta Metallurgica 31(6) (1983) 853. [90] R.A. Ricks, P.R. Howell, The formation of discrete precipitate dispersions on mobile interphase boundaries in iron-base alloys, Acta Metallurgica 31(6) (1983) 853-861. [91] R.A. Ricks, P.R. Howell, BOWING MECHANISM FOR INTERPHASE BOUNDARY MIGRATION IN ALLOY-STEELS, Metal Science 16(6) (1982) 317-321. [92] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ International 44(11) (2004) 1945. [93] T. Gladman, The Physical Metallurgy of Microalloyed Steels(The Institute of Materials.) (1997). [94] T. Gladman, (Materials Science and Technology,) (1999) p.30. [95] U.F. Kocks, ON SPACING OF DISPERSED OBSTACLES, Acta Metallurgica 14(11) (1966) 1629-&. [96] T. Gladman, The physical metallurgy of microalloyed steels, Institute of Materials1997. [97] J.W. Martin, Precipitation Hardening, 2nd ed.1998. [98] C.-Y.H.a.J.-R.Y. Hung-Wei Yen, Proceeding of the 2nd International Symposium on Steel Science (ISSS, I. 2009), Kyoto, Japan, 2009. [99] H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties (2006). [100] W.T. Reynolds, F.Z. Li, C.K. Shui, H.I. Aaronson, The Incomplete transformation phenomenon in Fe-C-Mo alloys, Metallurgical transactions. A, Physical metallurgy and materials science 21(6) (1990) 1433-1463. [101] A. Fadel, D. Gliŝić, N. Radović, D. Drobnjak, Influence of Cr, Mn and Mo Addition on Structure and Properties of V Microalloyed Medium Carbon Steels, Journal of Materials Science & Technology 28(11) (2012) 1053-1058. [102] J. Čížek, M. Janeček, T. Krajňák, J. Stráská, P. Hruška, J. Gubicza, H.S. Kim, Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation, Acta Materialia 105 (2016) 258-272. [103] S.-P. Tsai, C.-H. Jen, H.-W. Yen, C.-Y. Chen, M.-C. Tsai, C.-Y. Huang, Y.-T. Wang, J.-R. Yang, Effects of interphase TiC precipitates on tensile properties and dislocation structures in a dual phase steel, Materials Characterization 123 (2017) 153-158. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72396 | - |
| dc.description.abstract | 經由界面析出物強化的肥粒鐵鋼已經被發展且應用超過了十年,但僅有少數的文章已發表關於其強變形後的行為現象。本論文主要研究具有奈米等級的析出物之肥粒鐵經過兩種不同處理方式後的微結構變化,其中主要分成兩部分的製程方式:(1)冷壓退火處理 (2)高壓扭轉
(1) 冷壓退火處理: 本研究引入經冷壓退火處理後細化晶粒的理論,並透過光學顯微鏡,電子背向繞射(EBSD) ,機械性能則以硬度與拉伸試驗的方式來觀測結果。結果顯示,硬度以及拉伸強度皆隨著退火溫度升高而下降且比原材性質劣化。此外,退火後材料呈現比例低的再結晶度。經由(掃描)穿透式電子顯微鏡的幫助,本研究確認了其析出物的粗化效應造成了冷壓退火後的性質劣化。再者,經由與IF鋼對比,同時也確認析出物延緩了再結晶的發生,導致再結晶比例下降。 (2) 高壓扭轉: 本研究採用3120B材料經高壓扭轉後,透過硬度量測及JeoL JSM-7800F Prime的電子背向繞射(EBSD)來研究其微結構變化。經本研究觀測,此材料需要一定大小的應變量,其硬度才始之劇烈上升。換句話說,當應變量超過某值後,材料才開始改變其微結構造成硬度的上升。根據先前的研究,由於析出物能有效抑制差排的蜂巢狀結構產生,本研究進一步指出,析出物的角色因而延緩了高壓扭轉時的第一步驟(差排的蜂巢狀結構產生),造成材料在第一階段硬度的上升被延後。而當壓延量超過此極值,金相才開始發生晶粒形貌變化,接著伴隨其他步驟發生。 總結來說,與其他鋼鐵與合金相比,具有緻密且細小之碳化物的肥粒鐵鋼有相當多不同的行為結果,而這些不同可以透過其碳化物與差排或晶界的的交互作用所解釋。因此,透過研究缺陷及其動態反應,像壓延與再結晶現象,將讓我們更透測了解材料的性質與微結構。透過本研究的結果則可應用於冷軋帶鋼或是嚴重鍛造成分的發展。 | zh_TW |
| dc.description.abstract | Very strong ferritic steels hardened by interphase-precipitated carbides has been developed and applied for over 10 years. Only few reports discussed its stability under thermo-mechanical process or severe deformation. The current work investigates microstructural evolutions of nanometer-sized carbide-strengthened ferritic steels subjected two different processes: (1) cold-rolling followed by annealing and (2) high pressure torsion.
In cold-rolling and annealing process, it was found that dense and tiny carbides greatly retard recrystallization in annealing. Moreover, significant loss of strength was observed after annealing even for carbides with excellent thermal stability. The current work demonstrated that the loss of strength results from coarsening of carbides. Two mechanisms were proposed based on the investigations by transmission electron microscopy. In summary, deformation-and-annealing process breaks thermal stability of (Ti, V)C or (Ti, V, Mo)C nanometer-sized carbides. In high pressure torsion, hardness of strong ferritic steel can greatly increase from 313Hv to 568 Hv. Such a huge work hardening has never seen in any ferritic steel. Besides, an abnormal hardening evolution with shear strain was observed. Although the detailed mechanism is not realized, it might be explained by the interaction between dislocation and carbide. In conclusion, the ferritic steels with dense and tiny carbides revels extremely different behaviors when they are subjected to both deformation-and-annealing and server deformation. These differences result from the micro-mechanisms between carbide with dislocation or grain boundary. Hence, playing with defects and dynamic responses, such as deformation and recrystallization, enables materials novel properties with microstructural complexity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:39:54Z (GMT). No. of bitstreams: 1 ntu-107-R05527037-1.pdf: 44814555 bytes, checksum: d36c16c6b9ffb9d09520aae716aa2c2c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 iii
中文摘要 vi ABSTRACT viii CONTENTS x LIST OF FIGURES xiii LIST OF TABLES xxii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Introduction 3 2.2 Cold rolling with heat treatment 6 2.2.1 Introduction 6 2.2.2 Cold rolling 7 2.2.3 Annealing 10 2.3 High pressure torsion (HPT) 15 2.3.1 Strain in HPT process 16 2.3.2 Microstructural characteristics processed by HPT 18 2.3.3 The evolution of hardness and homogeneity processed by HPT 21 2.4 Interphase Precipitation 25 2.4.1 Precipitation of Carbides in steels 25 2.4.2 Introduction to Interphase Precipitation 26 2.4.3 Morphologies of Interphase Precipitation 27 2.4.4 Formation Mechanism of Interphase Precipitation 28 2.4.5 Strengthening for Interphase Precipitation 32 2.4.6 Experimental Observation of Interphase Precipitation 35 Chapter 3 Experiment procedures 37 3.1 Introduction 37 3.2 Instruments for Analysis & Specimen Preparation 39 3.2.1 Optical Microscopy (OM) 39 3.2.2 Scanning Electron Microscope (SEM) 39 3.2.3 Electron Backscattered Diffraction (EBSD) 39 3.2.4 Transmission Electron Microscope (TEM) 40 3.2.5 Vickers Hardness 40 3.2.6 Tensile Test 41 Chapter 4 Experimental Results and Discussion 43 4.1 Microstructure analysis of 3108B & 3120B As-received Steels 43 4.1.1 Microstructure Characterization of 3108B & 3120B As-received Steels 43 4.1.2 Mechanical Behavior (Tensile Test) of 3108B & 3120B 48 4.1.3 Thermal stability of carbides in 3108B & 3120B steels 51 4.2 Cold rolling and Annealing 54 4.2.1 Microstructure Characterization of Cold Rolling and Annealing 3108B & 3120B Comparing with IF steels 54 4.2.2 Mechanical Behavior (Micro-hardness and Tensile Test) of Cold Rolling with Annealing 3108B & 3120B 64 4.2.3 Influence of Precipitaion on Cold-Rolled With Recrystallizaiton of 3108B & 3120B By TEM Investigation 69 4.2.4 Further TEM investigation of 3120B Cold Rolling specimen 76 4.3 HPT processing 78 4.3.1 Microstructure Characterization of 3120B with HPT Processing 78 4.3.2 Hardness Distribution of 3120B with HPT Processing 82 4.3.3 TEM Analysis on 3120B with HPT processing 84 Chapter 5 Conclusion 90 Chapter 6 Future Work 92 REFERENCE 94 | |
| dc.language.iso | en | |
| dc.subject | 鋼鐵 | zh_TW |
| dc.subject | 界面析出物 | zh_TW |
| dc.subject | 再結晶 | zh_TW |
| dc.subject | 冷軋 | zh_TW |
| dc.subject | 退火 | zh_TW |
| dc.subject | 高壓扭轉 | zh_TW |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | 電子背向繞射 | zh_TW |
| dc.subject | high- pressure torsion | en |
| dc.subject | steel | en |
| dc.subject | interphase precipitation | en |
| dc.subject | recrystallization | en |
| dc.subject | cold-rolled | en |
| dc.subject | annealing | en |
| dc.subject | electron backscattering diffraction | en |
| dc.subject | transmission electron microscopy | en |
| dc.title | 嚴重塑性變形對納米碳化物強化型肥粒鐵鋼之顯微結構與機械性能影響 | zh_TW |
| dc.title | Impacts of Severe Plastic Deformation on Microstructure and Mechanical Properties of Ferritic Steels Strengthened by Nanometer-sized Carbides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃慶淵,王星豪,林新智,黃爾文 | |
| dc.subject.keyword | 鋼鐵,界面析出物,再結晶,冷軋,退火,高壓扭轉,穿透式電子顯微鏡,電子背向繞射, | zh_TW |
| dc.subject.keyword | steel,interphase precipitation,recrystallization,cold-rolled,annealing,high- pressure torsion,transmission electron microscopy,electron backscattering diffraction, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201803715 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 43.76 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
