Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorCheng-Chang Tsaien
dc.contributor.author蔡政錩zh_TW
dc.date.accessioned2021-06-17T06:31:17Z-
dc.date.available2025-09-19
dc.date.copyright2020-09-29
dc.date.issued2020
dc.date.submitted2020-09-19
dc.identifier.citation1. Yih-Chung Tham, Xiang Li, Tien Y. Wong, Harry A. Quigley, Tin Aung, and Ching-Yu Cheng, Global prevalence of glaucoma and projections of glaucoma burden through 2040 : a systematic review and meta-analysis, Ophthalmology, 121 (11), 2081-2090 (2014).
2. J P Vrabec, and L A Levin, The neurobiology of cell death in glaucoma, Eye, 21, S11-S14 (2007).
3. Kimberly K. Gokoffski, Micalla Peng, Basheer Alas, and Phillip Lam, Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions, Current Opinion in Neurology, 33 (1), 93-105 (2020).
4. Louise A. Mesentier-Louro, and Yaping Joyce Liao, Optic nerve regeneration: considerations on treatment of acute optic neuropathy and end-stage disease, Current Ophthalmology Reports, 7, 11-20 (2019).
5. Wei Zhu, Christopher O’Brien, Joseph R O’Brien, and Lijie Grace Zhang, 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration, Nanomedicine, 9 (6), 859-875 (2014).
6. Loïc Binan, Abdellah Ajji, Gregory De Crescenzo, and Mario Jolicoeur, Approaches for neural tissue regeneration, Stem Cell Reviews and Reports, 10, 44-59 (2014).
7. Hamed Amani, Hamidreza Arzaghi, Mehrdad Bayandori, Amin Shiralizadeh Dezfuli, Hamidreza Pazoki-Toroudi, Abbas Shafiee, and Lida Moradi, Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques, Advanced Materials Interfaces, 6, 1900572 (2019).
8. Xinlong Wang, Nancy Rivera-Bolanos, Bin Jiang, and Guillermo A. Ameer, Advanced functional biomaterials for stem cell delivery in regenerative engineering and medicine, Advanced Functional Materials, 29, 1809009 (2019).
9. Guoyou Huang, Fei Li, Xin Zhao, Yufei Ma, Yuhui Li, Min Lin, Guorui Jin, Tian Jian Lu, Guy M. Genin, and Feng Xu, Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment, Chemical Reviews, 117, 12764-12850 (2017).
10. Yulin Li, João Rodrigues, and Helena Tomás, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications, Chemical Society Reviews, 41, 2193-2221 (2012).
11. Emily R. Aurand, Kyle J. Lampe, and Kimberly B. Bjugstad, Defining and designing polymers and hydrogels for neural tissue engineering, Neuroscience Research, 72, 199-213 (2012).
12. D. Macaya, and M. Spector, Injectable hydrogel materials for spinal cord regeneration: a review, Biomedical Materials, 7, 012001 (2012).
13. Joshua A. Zimmermann, and David V. Schaffer, Engineering biomaterials to control the neural differentiation of stem cells, Brain Research Bulletin, 150, 50-60 (2019).
14. Thomas Wilems, Sangamithra Vardhan, Siliang Wu, and Shelly Sakiyama-Elbert, The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials, Brain Research Bulletin, 148, 25-33 (2019).
15. Geoffrey J Goodhill, Richard A Faville, Daniel J Sutherland, Brendan A Bicknell, Andrew W Thompson, Zac Pujic, Biao Sun, Elizabeth M Kita, and Ethan K Scott, The dynamics of growth cone morphology, BMC Biology, 13 (10), (2015).
16. Sujin Noh, Kyungha Kim, Jae-Ick Kim, Jung Hwal Shin, and Hyun-Wook Kang, Direct-write printing for producing biomimetic patterns with self-aligned neurites, Additive Manufacturing, 32, 101072 (2020).
17. Ben Kaplan, Uri Merdler, Ariel A. Szklannya, Idan Redenski, Shaowei Guo, Zemach Bar-Mucha, Noah Michael, and Shulamit Levenberg, Rapid prototyping fabrication of soft and oriented polyester scaffolds for axonal guidance, Biomaterials, 251, 120062 (2020).
18. William J. Tyler, The mechanobiology of brain function, Nature Reviews Neuroscience, 13, 867-878 (2012).
19. Matteo Chighizola, Tania Dini, Cristina Lenardi, Paolo Milani, Alessandro Podestà, and Carsten Schulte, Mechanotransduction in neuronal cell development and functioning, Biophysical Reviews, 11, 701-720 (2019).
20. Yu-Jung Chang, Che-Ming Hsu, Chia-Hua Lin, Michael Shiang-Cheng Lu, and Linyi Chen, Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling, Biochimica et Biophysica Acta, 1830, 4130-4136 (2013).
21. Chia-Yu Lin, Shyh-Chyang Luo, Jia-Shing Yu, Ta-Ching Chen, and Wei-Fang Su, Peptide-based polyelectrolyte promotes directional and long neurite outgrowth, ACS Applied Bio Materials, 2, 518-526 (2019).
22. Zhen-Hua Wang, Yen-Yu Chang, Jhih-Guang Wu, Chia-Yu Lin, Hsiao-Lung An, Shyh-Chyang Luo, Tang K. Tang, and Wei-Fang Su, Novel 3D neuron regeneration scaffolds based on synthetic polypeptide containing neuron cue, Macromolecular Bioscience, 18, 1700251 (2018).
23. Ta-Ching Chen, Pin-Yi She, Dong Feng Chen, Jui-Hsien Lu, Chang-Hao Yang, Ding-Siang Huang, Pao-Yang Chen, Chen-Yu Lu, Kin-Sang Cho, Hsin-Fu Chen, and Wei-Fang Su, Polybenzyl glutamate biocompatible scaffold promotes the efficiency of retinal differentiation toward retinal ganglion cell lineage from human-induced pluripotent stem cells, International Journal of Molecular Sciences, 20, 178 (2019).
24. Mahrokh Dadsetan, Andrew M. Knight, Lichun Lu, Anthony J. Windebank, and Michael J. Yaszemski, Stimulation of neurite outgrowth using positively charged hydrogels, Biomaterials, 30, 3874-3881 (2009).
25. Mi-Hee Kim, Ji Hun Park, Sunghoon Joo, Daewha Hong, Matthew Park, Ji Yu Choi, Hye Won Moon, Yang-Gyun Kim, Kyungtae Kang, and Insung S. Choi, Accelerated development of hippocampal neurons and limited adhesion of astrocytes on negatively charged surfaces, Langmuir, 34, 1767-1774 (2018).
26. F. R. Baxter, C. R. Bowen, I. G. Turner, and A. C. E. Dent, Electrically active bioceramics: a review of interfacial responses, Annals of Biomedical Engineering, 38, 2079-2092 (2010).
27. Ryan J. Wade, and Jason A. Burdick, Engineering ECM signals into biomaterials, Materials Today, 15 (10), 454-459 (2012).
28. Gloria A. A. Saracino, Daniela Cigognini, Diego Silva, Andrea Caprini, and Fabrizio Gelain, Nanomaterials design and tests for neural tissue engineering, Chemical Society Reviews, 42, 225-262 (2013).
29. Jinpeng Han, Likun Xiong, Xingyu Jiang, Xiaoyan Yuan, Yong Zhao, and Dayong Yang, Bio-functional electrospun nanomaterials: From topology design to biological applications, Progress in Polymer Science, 91, 1-28 (2019).
30. Jing Wu, Lili Xie, William Zhi Yuan Lin, and Qiushui Chen, Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development, Drug Discovery Today, 22 (9), 1375-1384 (2017).
31. Sheng Yi, Lai Xu, and Xiaosong Gu, Scaffolds for peripheral nerve repair and reconstruction, Experimental Neurology, 319, 112761 (2019).
32. Elkin Navarro Quiroz, Roberto Navarro Quiroz, Mostapha Ahmad, Lorena Gomez Escorcia, Jose Luis Villarreal, Cecilia Fernandez Ponce, and Gustavo Aroca Martinez, Cell signaling in neuronal stem cells, Cells, 7, 75 (2018).
33. Tatiana N. Olivares-Bañuelos, Donají Chí-Castañeda, and Arturo Ortega, Glutamate transporters: gene expression regulation and signaling properties, Neuropharmacology, 161, 107550 (2019).
34. Enas M. Ahmed, Hydrogel: preparation, characterization, and applications: a review, Journal of Advanced Research, 6, 105-121 (2015).
35. David Chimene, Roland Kaunas, and Akhilesh K. Gaharwar, Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies, Advanced Materials, 32, 1902026 (2020).
36. Vikram Singh Raghuwanshi, and Gil Garnier, Characterisation of hydrogels: linking the nano to the microscale, Advances in Colloid and Interface Science, 274, 102044 (2019).
37. Christopher D. Spicer, Hydrogel scaffolds for tissue engineering: the importance of polymer choice, Polymer Chemistry, 11, 184-219 (2020).
38. Chelsea M. Kirschner, and Kristi S. Anseth, Hydrogels in healthcare: from static to dynamic material microenvironments, Acta Materialia, 61, 931-944 (2013).
39. Elisabeth Prince, and Eugenia Kumacheva, Design and applications of man-made biomimetic fibrillar hydrogels, Nature Reviews Materials, 4, 99-115 (2019).
40. Shantanu Sur, Christina J. Newcomb, Matthew J. Webber, and Samuel I. Stupp, Tuning supramolecular mechanics to guide neuron development, Biomaterials, 34, 4749-4757 (2013).
41. Jacqueline M. Godbe, Ronit Freeman, Lena F. Burbulla, Jacob Lewis, Dimitri Krainc, and Samuel I. Stupp, Gelator length precisely tunes supramolecular hydrogel stiffness and neuronal phenotype in 3D culture, ACS Biomaterials Science Engineering, 6, 1196-1207 (2020).
42. Andrew Li, Akishige Hokugo, Anisa Yalom, Eric J. Berns, Nicholas Stephanopoulos, Mark T. McClendon, Luis A. Segovia, Igor Spigelman, Samuel I. Stupp, and Reza Jarrahy, A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers, Biomaterials, 35, 8780-8790 (2014).
43. Eric J. Berns, Shantanu Sur, Liuliu Pan, Joshua E. Goldberger, Sunitha Suresh, Shuming Zhang, John A. Kessler, and Samuel I. Stupp, Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels, Biomaterials, 35, 185-195 (2014).
44. Merav Antman-Passig, and Orit Shefi, Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration, Nano Letters, 16, 2567-2573 (2016).
45. Christopher D. L. Johnson, Debmalya Ganguly, Jonathan M. Zuidema, Thomas J. Cardinal, Alexis M. Ziemba, Kathryn R. Kearns, Simon M. McCarthy, Deanna M. Thompson, Ganpati Ramanath, Diana A. Borca-Tasciuc, Silvio Dutz, and Ryan J. Gilbert, Injectable, magnetically orienting electrospun fiber conduits for neuron guidance, ACS Applied Materials Interfaces, 11, 356-372 (2019).
46. Abdolrahman Omidinia-Anarkoli, Sarah Boesveld, Urandelger Tuvshindorj, Jonas C. Rose, Tamás Haraszti, and Laura De Laporte, An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells, Small, 13, 1702207 (2017).
47. Christopher Licht, Jonas C. Rose, Abdolrahman Omidinia Anarkoli, Delphine Blondel, Marta Roccio, Tamás Haraszti, David B. Gehlen, Jeffrey A. Hubbell, Matthias P. Lutolf, and Laura De Laporte, Synthetic 3D PEG-anisogel tailored with fibronectin fragments induce aligned nerve extension, Biomacromolecules, 20, 4075-4087 (2019).
48. Jonas C. Rose, David B. Gehlen, Tamás Haraszti, Jens Köhler, Christopher J. Licht, and Laura De Laporte, Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices, Biomaterials, 163, 128-141 (2018).
49. Jonas C. Rose, María Cámara-Torres, Khosrow Rahimi, Jens Köhler, Martin Möller, and Laura De Laporte, Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance, Nano Letters, 17, 3782-3791 (2017).
50. Sandra Araújo-Custódio, Manuel Gomez-Florit, Ana R. Tomás, Bárbara B. Mendes, Pedro S. Babo, Suzanne M. Mithieux, Anthony Weiss, Rui M. A. Domingues, Rui L. Reis, and Manuela E. Gomes, Injectable and magnetic responsive hydrogels with bioinspired ordered structures, ACS Biomaterials Science Engineering, 5, 1392-1404 (2019).
51. T. C. Mokhena, and M. J. John, Cellulose nanomaterials: new generation materials for solving global issues, Cellulose, 27, 1149-1194 (2020).
52. Diego M. Nascimento, Yana L. Nunes, Maria C. B. Figueirêdo, Henriette M. C. de Azeredo, Fauze A. Aouada, Judith P. A. Feitosa, Morsyleide F. Rosa, and Alain Dufresne, Nanocellulose nanocomposite hydrogels: technological and environmental issues, Green Chemistry, 20, 2428-2448 (2018).
53. Bejoy Thomas, Midhun C. Raj, Athira K. B, Rubiyah M. H, Jithin Joy, Audrey Moores, Glenna L. Drisko, and Clément Sanchez, Nanocellulose, a versatile green platform: from biosources to materials and their applications, Chemical Reviews, 118, 11575-11625 (2018).
54. James C. Courtenay, Ram I. Sharma, and Janet L. Scott, Recent advances in modified cellulose for tissue culture applications, Molecules, 23, 654 (2018).
55. Yan Xue, Zihao Mou, and Huining Xiao, Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications, Nanoscale, 9, 14758-14781 (2017).
56. Youssef Habibi, Key advances in the chemical modification of nanocelluloses, Chemical Society Reviews, 43, 1519-1542 (2014).
57. Eero Kontturi, Päivi Laaksonen, Markus B. Linder, Nonappa, André H. Gröschel, Orlando J. Rojas, and Olli Ikkala, Advanced materials through assembly of nanocelluloses, Advanced Materials, 30, 1703779 (2018).
58. Dieter Klemm, Emily D. Cranston, Dagmar Fischer, Miguel Gama, Stephanie A. Kedzior, Dana Kralisch, Friederike Kramer, Tetsuo Kondo, Tom Lindström, Sandor Nietzsche, Katrin Petzold-Welcke, and Falk Rauchfuß, Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state, Materials Today, 21, 720-748 (2018).
59. Robert J. Moon, Ashlie Martini, John Nairn, John Simonsen, and Jeff Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, 40, 3941-3994 (2011).
60. Dieter Klemm, Friederike Kramer, Sebastian Moritz, Tom Lindström, Mikael Ankerfors, Derek Gray, and Annie Dorris, Nanocelluloses: a new family of nature-based materials, Angewandte Chemie International Edition, 50, 5438-5466 (2011).
61. E. Johan Foster, Robert J. Moon, Umesh P. Agarwal, Michael J. Bortner, Julien Bras, Sandra Camarero-Espinosa, Kathleen J. Chan, Martin J. D. Clift, Emily D. Cranston, Stephen J. Eichhorn, Douglas M. Fox, Wadood Y. Hamad, Laurent Heux, Bruno Jean, Matthew Korey, World Nieh, Kimberly J. Ong, Michael S. Reid, Scott Renneckar, Rose Roberts, Jo Anne Shatkin, John Simonsen, Kelly Stinson-Bagby, Nandula Wanasekara, and Jeff Youngblood, Current characterization methods for cellulose nanomaterials, Chemical Society Reviews, 47, 2609-2679 (2018).
62. Fleur Rol, Mohamed Naceur Belgacem, Alessandro Gandini, and Julien Bras, Recent advances in surface-modified cellulose nanofibrils, Progress in Polymer Science, 88, 241-264 (2019).
63. Nora Odabas, Hassan Amer, Markus Bacher, Ute Henniges, Antje Potthast, and Thomas Rosenau, Properties of cellulosic material after cationization in different solvents, ACS Sustainable Chemistry Engineering, 4, 2295-2301 (2016).
64. Malin Jonsson, Christian Brackmann, Maja Puchades, Karoline Brattås, Andrew Ewing, Paul Gatenholm, and Annika Enejder, Neuronal Networks on nanocellulose scaffolds, Tissue Engineering Part C: Methods, 21, 1162-1170 (2015).
65. Ziguang Zhao, Ruochen Fang, Qinfeng Rong, and Ming jie Liu, Bioinspired nanocomposite hydrogels with highly ordered structures, Advanced Materials, 29, 1703045 (2017).
66. Kevin J. De France, Emily D. Cranston, and Todd Hoare, Mechanically reinforced injectable hydrogels, ACS Applied Polymer Materials, 2, 1016-1030 (2020).
67. Filipe V. Ferreira, Caio G. Otoni, Kevin J. De France, Hernane S. Barud, Liliane M.F. Lona, Emily D. Cranston, and Orlando J. Rojas, Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering, Materials Today, 37, 126-141 (2020).
68. Ryan J. Hickey, and Andrew E. Pelling, Cellulose biomaterials for tissue engineering, Frontiers in Bioengineering and Biotechnology, 7, 45 (2019).
69. Kevin De France, Zhihui Zeng, Tingting Wu, and Gustav Nyström, Functional materials from nanocellulose: utilizing structure–property relationships in bottom-up fabrication, Advanced Materials, 2000657 (2020).
70. Qianqian Zhu, Qian Yao, Jianzhong Sun, Honglei Chen, Wenhua Xu, Jun Liu, and Qianqian Wang, Stimuli induced cellulose nanomaterials alignment and its emerging applications: a review, Carbohydrate Polymers, 230, 115609 (2020).
71. Ragesh Prathapan, Rico F. Tabor, Gil Garnier, and Jinguang Hu, Recent progress in cellulose nanocrystal alignment and its applications, ACS Applied Bio Materials, 3, 1828-1844 (2020).
72. Reaz A. Chowdhury, Shane X. Peng, and Jeffrey Youngblood, Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method, Cellulose, 24, 1957-1970 (2017).
73. Dongdong Ye, Pengcheng Yang, Xiaojuan Lei, Donghui Zhang, Liangbin Li, Chunyu Chang, Pingchuan Sun, and Lina Zhang, Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth, Chemistry of Materials, 30, 5175-5183 (2018).
74. Donglei Liu, Xufeng Dong, Baoguo Han, Hao Huang, and Min Qi, Cellulose nanocrystal/collagen hydrogels reinforced by anisotropic structure: Shear viscoelasticity and related strengthening mechanism, Composites Communications, 21, 100374 (2020).
75. Harm-Anton Klok, Josef F. Langenwalter, and Sébastien Lecommandoux, Self-assembly of peptide-based diblock oligomers, Macromolecules, 33, 7819-7826 (2000).
76. Gijs J. M. Habraken, Karel H. R. M. Wilsens, Cor E. Koning, and Andreas Heise, Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polymer Chemistry, 2, 1322–1330 (2011).
77. Norma J Greenfield, Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1, 2876–2890 (2006).
78. Sourav Bhattacharjee, DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, 235, 337–351 (2016).
79. Https://www.olympus-lifescience.com/zh/microscope-resource/primer/techniques/polarized/michel/
80. Https://anorg.chem.uu.nl/b%20SYNEW/Portale.pdf
81. U-Ser Jeng, Chiu Hun Su, Chun-Jen Su, Kuei-Fen Liao, Wei-Tsung Chuang, Ying-Huang Lai, Je-Wei Chang, Yi-Jiun Chen, Yu-Shan Huang, Ming-Tao Lee, Kuan-Li Yu, Jhih-Min Lin, Din-Goa Liu, Chia-Feng Chang, Chin-Yen Liu, Chien-Hung Chang, and Keng S. Liang, A small/wide-angle X-ray scattering instrument for structural characterization of air–liquid interfaces, thin films and bulk specimens. Journal of Applied Crystallography, 43, 110–121 (2010).
82. Gung-Chian Yin, Yen-Fang Song, Mau-Tsu Tang, Fu-Rong Chen, Keng S. Liang, Frederick W. Duewer, Michael Feser, Wenbing Yun, and Han-Ping D. Shieh, 30nm resolution x-ray imaging at 8keV using third order diffraction of a zone plate lens objective in a transmission microscope. Applied Physics Letters, 89, 221122, (2006).
83. Christopher W. Macosko, Rheology: Principles, Measurements, and Applications. Wiley‐VCH: 1994.
84. Rubie Mavelil‐Sam, B. Deepa, Rekha Rose Koshy, Siji Kuttimavilayil Mary, Laly Aley Pothan, and Sabu Thomas, Rheological properties of nanocomposites based on cellulose nanofibrils and cellulose nanocrystals. In Handbook of Nanocellulose and Cellulose Nanocomposites, Volume 1. Wiley‐VCH: 2017.
85. Cheng-Chang Tsai, Zhihua Gan, Tao Chen, and Shiao-Wei Kuo, Competitive hydrogen bonding interactions influence the secondary and hierarchical self-assembled Structures of polypeptide-based triblock copolymers. Macromolecules, 51, 3017-3029 (2018).
86. Matthias Barz, Aroa Duro-Castano, and María J. Vicent, A versatile post-polymerization modification method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their use in “click chemistry”. Polymer Chemistry, 4, 2989-2994 (2013).
87. Ling-Ling Wang, Jian-Tao Chen, Long-Fei Wang, Sha Wu, Guang-zhao Zhang, Han-Qing Yu, Xiao-dong Ye, and Qing-Shan Shi, Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions. Scientific Reports, 7, 12787 (2017).
88. Misaki Hisada, Yuriko Tomizawa, and Yoshinori Kawase, Removal kinetics of cationic azo-dye from aqueous solution by poly-γ-glutamic acid biosorbent: contributions of adsorption and complexation/precipitation to basic orange 2 removal. Journal of Environmental Chemical Engineering, 7, 103157 (2019).
89. R. B. Woodward, C. H. Schramm, Synthesis of protein analogs. Journal of the American Chemical Society, 69, 1551 (1947).
90. Timothy J. Deming, Synthesis of side-chain modified polypeptides. Chemical Reviews, 116, 786–808 (2016).
91. Jianjun Cheng, and Timothy J. Deming, Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. Topics in Current Chemistry, 310, 1–26 (2012).
92. Gijs J. M. Habraken, Maloes Peeters, Carin H. J. T. Dietz, Cor E. Koninga, and Andreas Heise, How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 °C? effect of temperature on homo-, block- and graft (co)polymerization. Polymer Chemistry, 1, 514–524 (2010).
93. M. Biagiotti, G. Borghese, P. Francescato, C. F. Morelli, A. M. Albertini, T. Bavaro, D. Ubiali, R. Mendichi, and G. Speranza, Esterification of poly(γ-glutamic acid) (γ-PGA) mediated by its tetrabutylammonium salt. RSC Advances, 6, 43954–43958 (2016).
94. Gaëlle Le Fer, Delphine Portes, Guillaume Goudounet, Jean-Michel Guigner, Elisabeth Garanger, and Sébastien Lecommandoux, Design and self-assembly of PBLG-b-ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides. Organic Biomolecular Chemistry, 15, 10095–10104 (2017).
95. W. E. Hanby, S. G. Waley, and J. Watson, Synthetic polypeptides. part II. polyglutamic acid. Journal of the Chemical Society, 3239–3249 (1950).
96. Chenglong Ge, Huan Ye, Fan Wu, Junliang Zhu, Ziyuan Song, Yong Liu, and Lichen Yin, Biological applications of water-soluble polypeptides with ordered secondary structures. Journal of Materials Chemistry B, Advance Article (2020).
97. Ziyuan Song, Zhengzhong Tan, Xuetao Zheng, Zihuan Fu, Ettigounder Ponnusamy, and Jianjun Cheng, Manipulating the helix–coil transition profile of synthetic polypeptides by leveraging side-chain molecular interactions. Polymer Chemistry, 11, 1445–1449 (2020).
98. Hua Lu, Jing Wang, Yugang Bai, Jason W. Lang, Shiyong Liu, Yao Lin, Jianjun Cheng, Ionic polypeptides with unusual helical stability. Nature Communications, 2, 206 (2011).
99. Https://www.airitilibrary.com/Publication/alDetailedMesh?docid=U0001-0503202023173100
100. Chunhua Cai, Liquan Wang, and Jiaping Lin, Self-assembly of polypeptide-based copolymers into diverse aggregates. Chemical Communications, 47, 11189–11203 (2011).
101. Na Peng, Yanfeng Wang, Qifa Ye, Lei Liang, Yuxing An, Qiwei Li, and Chunyu Chang, Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydrate Polymers, 137, 59–64 (2016).
102. Seema Saini, Çigdem Yücel Falco, Mohamed Naceur Belgacem, and Julien Bras, Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydrate Polymers, 135, 239–247 (2016).
103. Luis Valencia, Emma M. Nomena, Susanna Monti, Walter Rosas-Arbelaez, Aji P. Mathew, Sugam Kumar, and Krassimir P. Velikov, Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials’ properties. Nanoscale, Advance Article (2020).
104. F. Di Lorenzo, and S. Seiffert, Nanostructural heterogeneity in polymer networks and gels. Polymer Chemistry, 6, 5515–5528 (2015).
105. Mitsuhiro Shibayama, Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polymer Journal, 43, 18–34 (2011).
106. Daniël C. Schoenmakers, Alan E. Rowan, and Paul H.J. Kouwer, Crosslinking of fibrous hydrogels. Nature Communications, 9, 2172 (2018).
107. Mei-Chun Li, Qinglin Wu, Kunlin Song, Sunyoung Lee, Yan Qing, and Yiqiang Wu, Cellulose nanoparticles: structure−morphology−rheology relationships. ACS Sustainable Chemistry Engineering, 3, 821–832 (2015).
108. Oleksandr Nechyporchuk, Mohamed Naceur Belgacem, and Frédéric Pignon, Current progress in rheology of cellulose nanofibril suspensions. Biomacromolecules, 17, 2311–2320 (2016).
109. Llyza Mendoza, Warren Batchelor, Rico F. Tabor, and Gil Garnier, Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective. Journal of Colloid and Interface Science, 509, 39–46 (2018).
110. M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, and T. Lindström, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8, 1934–1941 (2007).
111. C. A. Maestri, M. Abrami, S. Hazan, E. Chistè, Y. Golan, J. Rohrer, A. Bernkop- Schnürch, M. Grassi, M. Scarpa, and P. Bettotti, Role of sonication pre-treatment and cation valence in the sol-gel transition of nano-cellulose suspensions. Scientific Reports, 7, 11129 (2017).
112. Danning Hu, Yande Cui, Kangwei Mo, Junmei Wang, Yanan Huang, Xiaran Miao, Jinyou Lin, and Chunyu Chang, Ultrahigh strength nanocomposite hydrogels designed by locking oriented tunicate cellulose nanocrystals in polymeric networks. Composites Part B, 197, 108118 (2020).
113. Mokit Chau, Kevin J. De France, Bernd Kopera, Vanessa R. Machado, Sabine Rosenfeldt, Laura Reyes, Katelyn J. W. Chan, Stephan Förster, Emily D. Cranston, Todd Hoare, and Eugenia Kumacheva, Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28, 3406-3415 (2016).
114. Amir H. Milani, Lee A. Fielding, Polly Greensmith, Brian R. Saunders, Daman J. Adlam, Anthony J. Freemont, Judith A. Hoyland, Nigel W. Hodson, Mohamed A. Elsawy, Aline F. Miller, Liam P. D. Ratcliffe, Oleksandr O. Mykhaylyk, and Steven P. Armes, Anisotropic pH-responsive hydrogels containing soft or hard rod-like particles assembled using low shear. Chemistry of Materials, 29, 3100-3110 (2017).
115. Daniel R. King, Riku Takahashi, Takuma Ikai, Kazuki Fukao, Takayuki Kurokawa, and Jian Ping Gong, Anisotropic double-network hydrogels via controlled orientation of a physical sacrificial network. ACS Applied Polymer Materials, 2, 2350-2358 (2020).
116. Yeqiao Meng, Xiaowen Zhao, and Lin Ye, Construction of dual orientation crystalline structure in poly (vinyl alcohol)/graphene oxide nano-composite hydrogels and reinforcing mechanism. Industrial Engineering Chemistry Research, 58, 10908-10921 (2019).
117. L. Segal, J. J. Creely, A. E. Martin, Jr, and C. M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, 29, 786-794 (1959).
118. Meri J. Lundahl, A. Gisela Cunha, Ester Rojo, Anastassios C. Papageorgiou, Lauri Rautkari, Julio C. Arboleda, and Orlando J. Rojas, Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Scientific Reports, 6, 30695 (2016).
119. A. L. Patterson, The Scherrer formula for x-ray particle size determination. Physical Review, 56, 978-982 (1939).
120. Ibrahim Fatih Cengiz, Joaquim Miguel Oliveira, and Rui L. Reis, Micro-CT – a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomaterials Research, 22, 26 (2018).
121. Rui Wang, Cheng Chen, Yi Zheng, Heng Wang, Jianwei Liu, and Shu-Hong Yu, Structure-property relationship of assembled nanowire materials. Materials Chemistry Frontiers, Advance Article (2020).
122. Zengqian Liu, Zhefeng Zhang, and Robert O. Ritchie, Structural orientation and anisotropy in biological materials: functional designs and mechanics. Advanced Functional Materials, 30, 1908121 (2020).
123. Yucheng Peng, Douglas J. Gardner, Yousoo Han , Alper Kiziltas, Zhiyong Cai, and Mandla A. Tshabalala, Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 20, 2379-2392 (2013).
124. Christine Grienberger, and Arthur Konnerth, Imaging calcium in neurons. Neuron, 73, 862-865 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72249-
dc.description.abstract視神經組織具有獨特的非均向結構而呈現突出的機械強度與功能性。而在所有用於組織工程的人工軟質材料之中,水凝膠為首選的材料由於其仿生的三維結構以及彈性的機械性質。視神經預期的機械性質應在數百至兩萬帕斯卡的範圍裡,含水量應高於90 %,而順向規則結構應超過70 %。多種方式已被建立以製備出具有順向性的水凝膠,像是自組裝的胜肽或是在磁場下的高分子。然而,其複雜的合成製作使得大規模生產與高成本的議題很困難去解決。因此,本研究的目標是開發以簡易方式製備水凝膠具有順向性結構。我們合成水溶性胜肽型聚電解質並與容易排列順向性的奈米纖維進行交聯,所形成的奈米複合型水凝膠。並進一步對材料的基層面有系統地探討其化學組成、形貌與性質之關聯。
首先,選擇正電荷奈米纖維(CNF+)並與聚胜肽進行交聯。使用鈉鹽的谷氨酸苯酯-谷氨酸無規共聚物(poly(r-benzyl-L-glutamate)40-r-poly(L-glutamic acid)60, PBGA60-Na)是因為其包含谷氨酸的神經刺激因子。水凝膠藉著混合不同量的CNF+與PBGA60-Na以靜電荷與氫鍵作用力而形成。在剪切力下製備水凝膠具有順向規則的結構。接下來,水凝膠的形貌以偏光光學顯微鏡、小角度X光散射、掠角廣角度X光散射與X光三維影像進行鑑定。以流變儀與物性測試儀來研究水凝膠的機械性質。本文特別使用小角度X光散射的技術來定量研究凝膠態的奈米纖維溶液、水凝膠的交聯網路結構、結構上的纖維束半徑、動態關聯長度與順向性。最後,結構與機械性質可以關聯並解釋。
當水凝膠的CNF+含量增加時,其形貌在順向規則下具有從稀疏纖維結構至緊密狀的變化。在固定0.5 wt. %的交聯劑,其機械性質會隨著CNF+含量從1.0 wt. %至3.2 wt. %的增加而提升高達7倍(18476.67帕斯卡)。當化學組成在3.2 wt. %的CNF+與0.5 wt. %的交聯劑時,其複合材料具有最佳的機械性質(18476.67帕斯卡)、含水量(97.53 %)以及順向規則結構(74.17 %)。此水凝膠未來適合用於視神經再生的應用。
zh_TW
dc.description.abstractThe optic nerve of eye exhibits hierarchical aligned structure with unique anisotropic mechanical strength and functional performances. Among the artificial soft materials for tissue engineering, hydrogel is preferred material due to its biomimetic three dimensional structure and elastic mechanical property. The desired mechanical properties of optic nerve should be in the range of several hundreds to twenty thousands Pascal. The water content should be higher than 90 %. The aligned structure should be more than 70 %. Many approaches have been developed to fabricate hydrogel with aligned structure such as self assembled peptide or polymer under magnetic field. However, those approaches are complicated, low yield, and high cost. The goal of this research is to develop facile method for hydrogel with anisotropic structure. We synthesize water soluble peptide based polyelectrolyte which is crosslinked with easily aligned cellulose nanofibrils to form nanocomposite hydrogel. We further investigate the relationships among chemical composition, morphology and property of the material systematically.
First, the cationic cellulose nanofibrils (CNF+) was selected to be crosslinked with polypeptide. The sodium salt of poly (r-benzyl-L-glutamate)40-r-poly(L-glutamic acid)60 (PBGA60-Na) was used because it contains neurotransmitter of glutamate. The hydrogel was formed by mixing different amount of CNF+ and PBGA60-Na through static charge and hydrogen bonding. The hydrogel with anisotropic structure was fabricated under shear force. Next, the morphology of the hydrogel was evaluated by polarized optical microscope, small angle X-ray scattering, grazing-incidence wide angle X-ray scattering and X-ray tomography. The mechanical properties of the hydrogel were studied by rheometer and texture analyzer. We used small angle X-ray scattering technique to quantify the gel-like cellulose nanofibrils solution, hydrogel crosslinked network structure, cellulose bundle radius, dynamic correlation length, and anisotropy in particular. Last but not least, the hydrogel structure could correlate with the mechanical property.
When the content of CNF+ is increased in the hydrogel, the morphology is changed from sparse fibrillar structure to dense one with anisotropy. At fixed crosslinker concentration of 0.5 wt. %, the mechanical property can be seventh fold (18476.67 Pascal) upon increasing the content of CNF+ from 1.0 to 3.2 wt. %. The composite exhibits the best mechanical property (18476.67 Pascal), water content (97.53 %) and anisotropic structure (74.17 %) at the composition of 3.2 wt. % of CNF+ and 0.5 wt. % of crosslinker. This hydrogel will be suitable for the application of optic nerve regeneration.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:31:17Z (GMT). No. of bitstreams: 1
U0001-1409202013381400.pdf: 3703506 bytes, checksum: 571baec9e6d22579d5058488fe1f1ec7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 xi
表目錄 xvii
第一章 緒論 1
1.1 視神經再生 1
1.2 組織工程 3
1.2.1 原理與方法 3
1.2.2 仿生性支架所具備的性質 4
1.2.2.1 支架材料的來源. 5
1.2.2.2 孔隙率與形貌. 7
1.2.2.3 機械性質. 8
1.2.2.4 導電性. 8
1.2.2.5 生物降解性與生物相容性. 8
1.2.2.6 生物活性. 9
1.2.3 用於神經細胞再生之材料. 10
1.2.3.1 靜電紡絲纖維. 10
1.2.3.2 水凝膠. 12
1.2.3.3 靜電紡絲纖維與水凝膠之比較. 17
1.3 纖維素 18
1.3.1 結構、性質與類別 18
1.3.2 官能化奈米纖維 21
1.3.3 製備順向規則奈米纖維材料之方式與鑑定儀器 22
1.3.4 順向規則奈米纖維材料之形貌與性質 23
1.4 動機 25
1.5 目標與實驗設計 26
第二章 藥品、儀器、原理與實驗流程 28
2.1 實驗藥品 28
2.2 實驗儀器 29
2.3 命名 32
2.3.1 原料 32
2.3.2 奈米複合型水凝膠組成. 32
2.4 製備無規(L-谷氨酸-γ-苄酯―L-谷氨酸)共聚物鈉鹽 34
2.5 正電荷奈米纖維之後處理 36
2.6 以滴注加工製備均向奈米複合型水凝膠 37
2.7 以剪切力加工製備非均向奈米複合型水凝膠 38
2.8 鑑定聚胜肽、纖維素奈米纖維與奈米複合型水凝膠 41
2.8.1 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC). 41
2.8.1.1 原理. 41
2.8.1.2 實驗流程. 41
2.8.2 核磁共振分析儀 (Nuclear Magnetic Resonance, NMR). 42
2.8.2.1 原理. 42
2.8.2.2 實驗流程. 42
2.8.3 圓二色光譜 (Circular Dichroism, CD). 43
2.8.3.1 原理. 43
2.8.3.2 實驗流程. 43
2.8.4 半衰減全反射式傅立葉轉換紅外線光譜儀 (Attenuated Total Reflectance Fourier Transform Infrared Spectrometer, ATR-FTIR). 44
2.8.4.1 原理. 44
2.8.4.2 實驗流程. 44
2.8.5 動態光散射與介面電位分析儀 (Dynamic Light Scattering and Zeta Potential Analyzer, DLS and ZP). 44
2.8.5.1 原理. 44
2.8.5.2 實驗流程. 45
2.8.6 原子力顯微鏡 (Atomic Force Microscope, AFM). 46
2.8.6.1 原理. 46
2.8.6.2 實驗流程. 46
2.8.7 元素分析儀 (Elemental Analyzer, EA). 46
2.8.7.1 原理. 46
2.8.7.2 實驗流程. 46
2.8.8 偏光光學顯微鏡 (Polarized Optical Microscope, POM). 47
2.8.8.1 原理. 47
2.8.8.2 實驗流程. 47
2.8.9 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM). 49
2.8.9.1 原理. 49
2.8.9.2 實驗流程. 49
2.8.10 低掠角廣角X光散射儀 (Grazing-Incidence Wide Angle X-ray Scattering, GIWAXS). 50
2.8.10.1 原理. 50
2.8.10.2 實驗流程. 50
2.8.11 小角度X光散射儀 (Small Angle X-ray Scattering, SAXS). 51
2.8.11.1 原理. 51
2.8.11.2 實驗流程. 51
2.8.12 穿隧式X光顯微鏡 (Transmission X-ray Microscope, TXM). 52
2.8.12.1 原理. 52
2.8.12.2 實驗流程. 52
2.8.13 含水量測試 (Water Content Test). 53
2.8.13.1 原理. 53
2.8.13.2 實驗流程. 53
2.8.14 流變儀 (Rheometer). 54
2.8.14.1 原理. 54
2.8.14.2 實驗流程. 55
2.8.15 物性測試儀 (Texture Analyzer). 56
2.8.15.1 原理. 56
2.8.15.2 實驗流程. 56
第三章 結果與討論 57
3.1 合成與分析聚胜肽 57
3.1.1 化學合成路徑 57
3.1.2 聚胜肽之化學結構 59
3.1.3 聚胜肽之分子量 67
3.1.4 聚胜肽之二級結構、介面電位與粒徑尺寸 69
3.2 分析奈米纖維 72
3.2.1 奈米纖維之化學結構 72
3.2.2 奈米纖維之介面電位與粒徑尺寸 74
3.2.3 奈米纖維之表面形貌、雙折射與奈米結構 75
3.2.4 奈米纖維之流變與機械性質 81
3.3 不同加工方式的均向與非均向奈米複合型水凝膠之比較 84
3.3.1 雙折射 84
3.3.2 結晶結構與排列 86
3.3.3 表面與立體形貌 89
3.3.4 機械性質與含水量的關聯 92
3.4 不同組成的非均向奈米複合型水凝膠之比較 94
3.4.1 固體元素組成 94
3.4.2 雙折射 95
3.4.3 結晶結構與排列 99
3.4.4 奈米結構與機械性質的關聯 102
3.4.5 機械性質與含水量的關聯 105
第四章 結論 111
第五章 建議與未來展望 112
參考文獻 113
dc.language.isozh-TW
dc.subject聚胜肽zh_TW
dc.subject機械性zh_TW
dc.subject形貌zh_TW
dc.subject水凝膠zh_TW
dc.subject奈米複合材料zh_TW
dc.subject非均向性zh_TW
dc.subject奈米纖維zh_TW
dc.subjectanisotropyen
dc.subjectpolypeptideen
dc.subjectmechanical propertyen
dc.subjectmorphologyen
dc.subjecthydrogelen
dc.subjectnanocompositesen
dc.subjectcellulose nanofibrilsen
dc.title具非均向結構的奈米纖維與聚胜肽之奈米複合型水凝膠:合成、製程與性質的研究zh_TW
dc.titleAnisotropic Structured Cellulose Nanofibrils-Polypeptide Nanocomposite Hydrogel: Synthesis, Processing, and Propertiesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.advisor-orcid林唯芳(0000-0002-3375-4664)
dc.contributor.oralexamcommittee曹正熙(Cheng-Si Tsao),羅世強(Shyh-Chyang Luo),陳達慶(Ta-Ching Chen)
dc.contributor.oralexamcommittee-orcid,羅世強(0000-0003-3972-1086)
dc.subject.keyword聚胜肽,奈米纖維,非均向性,奈米複合材料,水凝膠,形貌,機械性,zh_TW
dc.subject.keywordpolypeptide,cellulose nanofibrils,anisotropy,nanocomposites,hydrogel,morphology,mechanical property,en
dc.relation.page129
dc.identifier.doi10.6342/NTU202004210
dc.rights.note有償授權
dc.date.accepted2020-09-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1409202013381400.pdf
  未授權公開取用
3.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved