Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72126
標題: 光電裝置輔助設計建模工具之基於類神經網路發展自適應擬合參數最佳化
Development of Adaptive Fitting Parameters Optimization TCAD Tool for Optoelectronic Device Modeling Based on Artificial Neural Networks
作者: Yu-Chun Liu
柳有駿
指導教授: 吳育任(Yuh-Renn Wu)
關鍵字: 人工神經網絡,自適應擬合程式,半導體設計,優化,
Artificial Neural Network,Adaptive Fitting Program,Semiconductor design,Optimization,
出版年 : 2018
學位: 碩士
摘要: 在1980年代,高效有機發光二極管(OLED)的發現,引起了對有機半導體的廣泛關注。然而,精準的物理性質很難明確定義,例如載流子遷移率(carrier mobility)或密度狀態(DOS)。有許多需要被確定的參數,這些參數在測量中通常存在著爭議。對於參數有多種可能性的組合來說,研究人員很難快速且精準的確認出合適的值。在本論文中,我們基於AI技術開發了自動擬合程序。我們將使用卷積神經網絡(CNN)來擬合數據。通過CNN的梯度下降行為,可以減少擬合過程的時間並優化參數且匹配實驗數據。在CNN模型的幫助下,與暴力搜索方法相比,擬合時間顯著減少。此外,CNN還可以用於優化LED效率。根據該結果,對於有漸變成分組成的EBL(GEBL)UVLED,據由調整GEBL中的Al濃度,效率下降率從7.83%降至6.35%且啟動電壓由4.96V降至4.86V。通過適當配置CNN模型,我們可以最大限度地利用計算資源來協助工程師進行裝置設計。
The discovery of highly efficient organic light-emitting-diodes (OLEDs) in the 1980s has attracted extensive attentions on organic semiconductors and devices. However, the accurate physical properties is difficult to be defined clearly. For example, carrier mobility or density of states for organic materials are difficult to be identified correctly. There exist many parameters to be configured out and those parameters are usually controversial in the measurement. With so many possible configurations of parameters, it is very hard for researchers to quickly sort out the accurate configuration. In this thesis, we developed an automatic fitting programs based on AI techniqies. We used convolutional neural networks (CNN) for data fitting. By the gradient descent behavior of CNN, it can reduce the time for fitting process and optimize parameters to match the experimental data. With the assistance from CNN model, the fittng time is significant reduced compared to brute-force search method. The parameters obtained from CNN model shows a good agreement to the experimental result. In addition, CNN can also be used to optimize LED efficiency. According to the results, it is reduced the efficiency droop from 7.83\% to 6.35\% and reduced the turn on voltage from 4.96V to 4.86V for a UV LED with gradual composition EBL (GEBL) by adjusting the aluminum composition in GEBL. With a proper configuration of CNN model, we can maximize the use of the computing resources to assist engineers for device designs.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72126
DOI: 10.6342/NTU201803083
全文授權: 有償授權
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.53 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved