Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorYu-Chun Liuen
dc.contributor.author柳有駿zh_TW
dc.date.accessioned2021-06-17T06:24:40Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation1 S. Albelwi and A. Mahmood, A Framework for Designing the Architectures of Deep Convolutional Neural Networks, Entropy, vol. 19, no. 6, p. 5, 2017.
2 Y.-R. Wu, One Dimensional Poisson, Drift-Di usion, and Schrodinger Solver, Optoelectronic device simulation lab.
3 J. J. Hop eld, Artificial neural networks, IEEE Circuits and Devices Magazine, vol. 4, p. 3, Sept 1988.
4 M. van Gerven and S. Bohte, Editorial: Arti cial Neural Networks as Models of Neural Information Processing, Front Comput Neurosci, vol. 11, p. 114, Dec 2017.
5 L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in Proceedings of COMPSTAT'2010 (Y. Lechevallier and G. Saporta, eds.), vol. 1, p. 177, Physica-Verlag HD, 2010.
6 B. Chen, C. sing Lee, S. tong Lee, P. Webb, Y. cheong Chan, W. Gambling, H. Tian, and W. Zhu, Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials, Japanese Journal of Applied Physics, vol. 39, no. 3R, p. 1190, 2000.
7 H. Xu, W.-J. Zhai, C. Tang, S.-Y. Qiu, R.-L. Liu, Z. Rong, Z.-Q. Pang, B. Jiang, J. Xiao, C. Zhong, B.-X. Mi, Q.-L. Fan, and W. Huang, Thickness Dependence of Carrier Mobility and the Interface Trap Free Energy Investigated by Impedance Spectroscopy in Organic Semiconductors, The Journal of Physical Chemistry C, vol. 120, no. 31, p. 17184, 2016.
8 K. T. Delaney, P. Rinke, and C. G. Van de Walle, Auger recombination rates in nitrides from rst principles, Applied Physics Letters, vol. 94, no. 19, p. 191109, 2009.
9 E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes, Applied Physics Letters, vol. 98, no. 16, p. 161107, 2011.
10 M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Origin of e ciency droop in GaN-based light-emitting diodes, Applied Physics Letters, vol. 91, no. 18, p. 183507, 2007.
11 J. Xie, X. Ni, Q. Fan, R. Shimada, m. zgr, and H. Morko, On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers, Applied Physics Letters, vol. 93, no. 12, p. 515, 2008.
12 A. David and M. J. Grundmann, Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes, Applied Physics Letters, vol. 97, no. 3, p. 033501, 2010.
13 K. A.Y., G. W., S. D.A., W. J.J., G. N.F., S. J., S. S.A., M. P.S., K. M.R., K. R.S., and S. F.M., Performance of High-Power AlInGaN Light Emitting Diodes, Physica Status Solidi (a), vol. 188, no. 1, p. 15, 2001.
14 J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming, Physica Status Solidi (a), vol. 1, p. 151, 1996.
15 A. N. K. Bzdok, Danilo and Martin,Statistics versus machine learning, Nature Methods, vol. 15, p. 233, 2018.
16 P. Langley, The changing science of machine learning, Machine Learning, vol. 82, p. 275, Mar 2011.
17 A. L. Samuel, Some Studies in Machine Learning Using the Game of Checkers. I, IBM Journal of Research and Development, vol. 3, p. 335, 1988.
18 E. Gibney, Google AI algorithm masters ancient game of Go, Nature 529, 2016.
19 D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, Computing Research Repository, vol. 9, p. 5, 2017.
20 S. Ruder, An overview of gradient descent optimization algorithms, Computing Research Repository, vol. 2, p. 7, 2016.
21 A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks,' in Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1 of NIPS'12, (USA), p. 1097, Curran Associates Inc., 2012.
22 R. Pascanu, T. Mikolov, and Y. Bengio, Understanding the exploding gradient problem, Computing Research Repository, vol. 2, p. 3, 2012.
23 A. G. Baydin, B. A. Pearlmutter, and A. A. Radul, Automatic differentiation in machine learning: a survey, Computing Research Repository, vol. 1, p. 4, 2015.
24 C. H.Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer, Applied Physics Letters, vol. 97, no. 26, p. 261103, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72126-
dc.description.abstract在1980年代,高效有機發光二極管(OLED)的發現,引起了對有機半導體的廣泛關注。然而,精準的物理性質很難明確定義,例如載流子遷移率(carrier mobility)或密度狀態(DOS)。有許多需要被確定的參數,這些參數在測量中通常存在著爭議。對於參數有多種可能性的組合來說,研究人員很難快速且精準的確認出合適的值。在本論文中,我們基於AI技術開發了自動擬合程序。我們將使用卷積神經網絡(CNN)來擬合數據。通過CNN的梯度下降行為,可以減少擬合過程的時間並優化參數且匹配實驗數據。在CNN模型的幫助下,與暴力搜索方法相比,擬合時間顯著減少。此外,CNN還可以用於優化LED效率。根據該結果,對於有漸變成分組成的EBL(GEBL)UVLED,據由調整GEBL中的Al濃度,效率下降率從7.83%降至6.35%且啟動電壓由4.96V降至4.86V。通過適當配置CNN模型,我們可以最大限度地利用計算資源來協助工程師進行裝置設計。zh_TW
dc.description.abstractThe discovery of highly efficient organic light-emitting-diodes (OLEDs) in the 1980s has attracted extensive attentions on organic semiconductors and devices. However, the accurate physical properties is difficult to be defined clearly. For example, carrier mobility or density of states for organic materials are difficult to be identified correctly. There exist many parameters to be configured out and those parameters are usually controversial in the measurement. With so many possible configurations of parameters, it is very hard for researchers to quickly sort out the accurate configuration. In this thesis, we developed an automatic fitting programs based on AI techniqies. We used convolutional neural networks (CNN) for data fitting. By the gradient descent behavior of CNN, it can reduce the time for fitting process and optimize parameters to match the experimental data. With the assistance from CNN model, the fittng time is significant reduced compared to brute-force search method. The parameters obtained from CNN model shows a good agreement to the experimental result. In addition, CNN can also be used to optimize LED efficiency. According to the results, it is reduced the efficiency droop from 7.83\% to 6.35\% and reduced the turn on voltage from 4.96V to 4.86V for a UV LED with gradual composition EBL (GEBL) by adjusting the aluminum composition in GEBL. With a proper configuration of CNN model, we can maximize the use of the computing resources to assist engineers for device designs.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:24:40Z (GMT). No. of bitstreams: 1
ntu-107-R05941087-1.pdf: 4638935 bytes, checksum: 4102be9cc17c54d120fc1c4dbc57ac12 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background of Organic Semiconductors Fitting 3
1.3 Background of LED Eciency Droop 5
1.4 Thesis Overview 5
Chapter 2 Methodology and Data Preprocessing 7
2.1 Articial Neural Network 7
2.1.1 Forward propagation 8
2.1.2 Back propagation 9
2.2 Convolution Neural Network 14
2.3 Input Data Preprocessing 18
2.4 Simulation Method of Gradient 20
2.4.1 Target approaching 23
2.4.2 Finding the extreme value 26
2.4.3 Curve tting 26
2.5 Boundary Condition 29
2.6 Optimal Work Flow 30
Chapter 3 Applications and Discussion 32
3.1 Experiment Environment 32
3.2 Automatic Fitting Programs Test 32
3.3 Fitting Organic Material 38
3.4 Exciton Fitting 42
3.5 Optimal Eciency Droop for LED 48
Chapter 4 Conclusion 55
Bibliography 57
dc.language.isozh-TW
dc.subject自適應擬合程式zh_TW
dc.subject優化zh_TW
dc.subject半導體設計zh_TW
dc.subject人工神經網絡zh_TW
dc.subjectOptimizationen
dc.subjectAdaptive Fitting Programen
dc.subjectSemiconductor designen
dc.subjectArtificial Neural Networken
dc.title光電裝置輔助設計建模工具之基於類神經網路發展自適應擬合參數最佳化zh_TW
dc.titleDevelopment of Adaptive Fitting Parameters Optimization TCAD Tool for Optoelectronic Device Modeling Based on Artificial Neural Networksen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee于天立(Tian-Li Yu),邱天隆(Tien-Lung Chiu),黃建璋(Jian-Jang Huang)
dc.subject.keyword人工神經網絡,自適應擬合程式,半導體設計,優化,zh_TW
dc.subject.keywordArtificial Neural Network,Adaptive Fitting Program,Semiconductor design,Optimization,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201803083
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved