請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71925完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游若?(Roch-Chui Yu) | |
| dc.contributor.author | Chung Hao Huang | en |
| dc.contributor.author | 黃仲豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:15:12Z | - |
| dc.date.available | 2018-09-17 | |
| dc.date.copyright | 2018-09-17 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-09-04 | |
| dc.identifier.citation | Anderson, R. G.; Kirsop, B. H., Oxygen as a Regulator of Ester Accumulation during Fermentation of Wort of High Specific Gravity. J. Inst. Brew. 1975, 81, 111-115.
Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145-2148. Augusto, F.; Leite e Lopes, A.; Zini, C. A., Sampling and sample preparation for analysis of aromas and fragrances. Trends Anal. Chem. 2003, 22, 160-169. Baltussen, E.; Sandra, P.; David, F.; Cramers, C., Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737-747. Bamforth, C. W., Current perspectives on the role of enzymes in brewing. J. Cereal Sci. 2009, 50, 353-357. Beal, A. D.; Mottram, D. S., Compounds contributing to the characteristic aroma of malted barley. J. Agr. Food Chem. 1994, 42, 2880-2884. Belitz, H.-D.; Grosch, W.; Schieberle, P., Alcoholic Beverages. In Food Chemistry, Belitz, H.-D.; Grosch, W.; Schieberle, P., Eds.; Springer: Berlin, Heidelberg, 2009; pp 892-937. Berrueta, L. A.; Alonso-Salces, R. M.; Heberger, K., Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196-214. Brewer’s Association, 2018 Beer style guidelines. 2018, Retrieved 29 August 2018, from https://www.brewersassociation.org/resources/brewers-association-beer-style-guidelines/ Brown, A. K.; Hammond, J. R. M., Flavour Control in Small-Scale Beer Fermentations. Food Bioprod. Process. 2003, 81, 40-49. Caballero, I.; Blanco, C. A.; Porras, M., Iso-α-acids, bitterness and loss of beer quality during storage. Trends Food Sci. Tech. 2012, 26, 21-30. Cajka, T.; Riddellova, K.; Tomaniova, M.; Hajslova, J., Recognition of beer brand based on multivariate analysis of volatile fingerprint. J. Chromatogr. A 2010, 1217, 4195-4203. Casey, G. P.; Ingledew, W. M., Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 1986, 13, 219-280. Charry-Parra, G.; Dejesus-Echevarria, M.; Perez, F. J., Beer volatile analysis: optimization of HS/SPME coupled to GC/MS/FID. J. Food Sci. 2011, 76, 205-211. Christoph, N.; Bauer-Christoph, C., Flavour of Spirit Drinks: Raw Materials, Fermentation, Distillation, and Ageing. In Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability, Berger, R. G., Ed.; Springer: Berlin, Heidelberg, 2007; pp. 219-239. Cubero-Leon, E.; Peñalver, R.; Maquet, A., Review on metabolomics for food authentication. Food Res. Int. 2014, 60, 95-107. Dalgliesh, C. E., Flavour stability. In Proceedings of the 16th Congress European Brewery Convention 1977, pp. 623-659. Delahunty, C. M.; Eyres, G.; Dufour, J. P., Gas chromatography‐olfactometry. J. Sep. Sci. 2006, 29, 2107-2125. Dong, J. J.; Li, Q. L.; Yin, H.; Zhong, C.; Hao, J. G.; Yang, P. F.; Tian, Y. H.; Jia, S. R., Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods. Food Chem. 2014, 161, 376-382. Drawert, F.; Rapp, A., Gas-Chromatographische Untersuchung pflanzlicher Aromen. Chromatographia 1968, 1, 446-457. Engan, S., Organoleptic threshold values of some alcohols and esters in beer. J. Inst. Brew. 1972, 78, 33-36. Engan, S., Organoleptic threshold values of some organic acids in beer. J. Inst. Brew. 1974, 80, 162-163. Engel, W.; Bahr, W.; Schieberle, P., Solvent assisted flavour evaporation - a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237-241. Etievant, P. X., Volatile Phenol Determination in Wine. J. Agr. Food Chem. 1981, 29, 65-67. Fritsch, H. T.; Schieberle, P., Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian Pilsner-type beer. J. Agr. Food Chem. 2005, 53, 7544-7551. Fujiwara, D.; Yoshimoto, H.; Sone, H.; Harashima, S.; Tamai, Y., Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and delta-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 1998, 14, 711-721. Green, J. A.; Parr, W. V.; Breitmeyer, J.; Valentin, D.; Sherlock, R., Sensory and chemical characterisation of Sauvignon blanc wine: Influence of source of origin. Food Res. Int. 2011, 44, 2788-2797. Grosch, W., Gas Chromatography—Olfactometry of Aroma Compounds. In Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability, Berger, R. G., Ed.; Springer: Berlin, Heidelberg, 2007; pp 363-378. Harbison, M., What is the difference between a lager and an ale? Popular Science 2013, Retrieved January 27 2018, from http://www.popsci.com Harmon, A. D., Solid-phase microextraction for the analysis of flavors. In Techniques for analyzing food aroma, Marsili, R., Ed.; Marcel Dekker: New York, 1997; pp. 81-112. Hill, P. G.; Smith, R. M., Determination of sulphur compounds in beer using headspace solid-phase microextraction and gas chromatographic analysis with pulsed flame photometric detection. J. Chromatogr. A 2000, 872, 203-213. Hiralal, L.; Olaniran, A. O.; Pillay, B., Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions. J. Biosci. Bioeng. 2014, 117, 57-64. Horak, T.; Kellner, V.; Culik, J.; Jurkova, M.; Cejka, P., Determination of some beer flavours by stir bar sorptive extraction and solvent back extraction. J. Inst. Brew. 2007, 113, 154-158. Hornsey, I. S., The beginnings, In A History of Beer and Brewing. The Royal Society of Chemistry: Cambridge, 2003; pp. 1-31. Jeleń, H. H.; Wlazły, K.; Wa̧sowicz, E.; Kamiński, E., Solid-Phase Microextraction for the Analysis of Some Alcohols and Esters in Beer: Comparison with Static Headspace Method. J. Agr. Food Chem. 1998, 46, 1469-1473. Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z., Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482-489. Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 2000, 880, 35-62. Kishimoto, T.; Wanikawa, A.; Kagami, N.; Kawatsura, K., Analysis of hop-derived terpenoids in beer and evaluation of their behavior using the stir bar-sorptive extraction method with GC-MS. J. Agr. Food Chem. 2005, 53, 4701-4707. Krogerus, K.; Gibson, B. R., 125th Anniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86-97. Langos, D.; Granvogl, M.; Schieberle, P., Characterization of the key aroma compounds in two bavarian wheat beers by means of the sensomics approach. J. Agr. Food Chem. 2013, 61, 11303-11311. Legras, J. L.; Merdinoglu, D.; Cornuet, J. M.; Karst, F., Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 2007, 16, 2091-2102. Leonhardt, R. H.; Berger, R. G., Nootkatone. In Biotechnology of Isoprenoids, Schrader, J.; Bohlmann, J., Eds.; Springer International Publishing: Cham, 2014; pp. 391-404. Liu, M.; Zeng, Z.; Xiong, B., Preparation of novel solid-phase microextraction fibers by sol–gel technology for headspace solid-phase microextraction-gas chromatographic analysis of aroma compounds in beer. J. Chromatogr. A 2005, 1065, 287-299. Lodolo, E. J.; Kock, J. L.; Axcell, B. C.; Brooks, M., The yeast Saccharomyces cerevisiae- the main character in beer brewing. FEMS Yeast Res. 2008, 8, 1018-1036. MacLeod Jr, W. D.; Buigues, N. M., Sesquiterpenes. I. Nootkatone, a new grapefruit flavor constituent. J. Food Sci. 1964, 29, 565-568. Malfliet, S.; Van Opstaele, F.; De Clippeleer, J.; Syryn, E.; Goiris, K.; De Coornan, L.; Aerts, G., Flavour instability of pale lager beers: Determination of analytical markers in relation to sensory ageing. J. Inst. Brew. 2008, 114, 180-192. Meilgaard, M., Stale flavor carbonyls in brewing. Brewers Dig. 1972, 47, 48-57. Meilgaard, M.; Dalgliesh, C.; Clapperton, J., Beer flavour terminology. J. Inst. Brew. 1979, 85, 38-42. Meilgaard, M. C., Prediction of flavor differences between beers from their chemical composition. J. Agr. Food Chem. 1982, 30, 1009-1017. Meussdoerffer, F. G., A comprehensive history of beer brewing. In Handbook of brewing: Processes, technology, markets, Eßlinger, H. M., Ed.; Wiley-VCH: Weinheim, 2009; pp. 1-42. Moorhead, J., Enzymes in beer: what’s happening in the mash. American Homebrewers Association n.d., Retrieved 15 July 2018, from https://www.homebrewersassociation.org Mussatto, S. I.; Dragone, G.; Roberto, I. C., Brewers' spent grain: generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1-14. Nordström, K., Formation of esters, acids and alcohols from α-keto acids by brewer's yeast. J. Inst. Brew. 1963, 69, 483-495. Oladokun, O.; Tarrega, A.; James, S.; Smart, K.; Hort, J.; Cook, D., The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 2016, 205, 212-220. Olaniran, A. O.; Hiralal, L.; Mokoena, M. P.; Pillay, B., Flavour-active volatile compounds in beer: production, regulation and control. J. Inst. Brew. 2017, 123, 13-23. Palmer, J., How to brew. n.p. n.d., Retrieved 14 July 2018, from http://howtobrew.com Papazian, C., Beer styles: their origins and classification. In Handbook of Brewing, Second Edition, Stewart, G. G.; Priest, F. G., Eds.; CRC Press: Boca Raton, 2006; pp. 54-91. Park, S. K.; Noble, A. C., Monoterpenes and Monoterpene Glycosides in Wine Aromas. In Beer and Wine Production, Gump, B. H.; Pruett, D. J., Eds.; American Chemical Society: Washington, DC, 1993; 536, pp. 98-109. Parker, J. K., Introduction to aroma compounds in foods. In Flavour Development, Analysis and Perception in Food and Beverages, Parker, J. K.; Elmore, J. S.; Methven, L., Eds.; Woodhead Publishing: Cambridge, 2015; pp. 3-30. Parliment, T., Solvent extraction and distillation techniques. In Flavor, fragrance, and odor analysis, Marsili, R., Ed.; CRC Press: Boca Raton, 2001; pp. 17-40. Pasteur, L., Mémoire sur la fermentation alcoolique. Ann. Chim. Phys. 1860, 58, 323-426. Peddie, H. A. B., Ester Formation in Brewery Fermentations. J. Inst. Brew. 1990, 96, 327-331. Pinho, O.; Ferreira, I. M.; Santos, L. H., Method optimization by solid-phase microextraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. J. Chromatogr. A 2006, 1121, 145-153. Pires, E. J.; Teixeira, J. A.; Branyik, T.; Vicente, A. A., Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937-1949. Plutowska, B.; Wardencki, W., Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – A review. Food Chem. 2008, 107, 449-463. Pozdrik, R.; Roddick, F. A.; Rogers, P. J.; Nguyen, T., Spectrophotometric method for exploring 3-methyl-2-butene-1-thiol (MBT) formation in lager. J. Agr. Food Chem. 2006, 54, 6123-6129. Reineccius, T. A.; Reineccius, G. A.; Peppard, T. L., The effect of solvent interactions on alpha-, beta-, and gamma-cyclodextrin/flavor molecular inclusion complexes. J Agr. Food Chem. 2005, 53, 388-392. Richter, T. M.; Eyres, G. T.; Silcock, P.; Bremer, P. J., Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer. J. Sep. Sci. 2017, 40, 4366-4376. Rossi, S.; Sileoni, V.; Perretti, G.; Marconi, O., Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Sci. Food Agr. 2013, 94, 919-928. Sakamoto, K.; Konings, W. N., Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105-124. Schieberle, P., Primary odorants of pale lager beer. Z. Lebensm. Unters. For. 1991, 193, 558-565. Sicard, D.; Legras, J. L., Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C. R. Biol. 2011, 334, 229-236. Sihto, E.; Arkima, V., Proportions of some fusel oil components in beer and their effect on aroma. J. Inst. Brew. 1963, 69, 20-25. Simpson, W. J., Cambridge Prize Lecture - Studies on the Sensitivity of Lactic-Acid Bacteria to Hop Bitter Acids. J. Inst. Brew. 1993, 99, 405-411. Steiner, E.; Auer, A.; Becker, T.; Gastl, M., Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material. J. Sci. Food Agr. 2012, 92, 803-813. Suomalainen, H., Yeast esterases and aroma esters in alcoholic beverages. J Inst. Brew. 1981, 87, 296-300. Suomalainen, H.; Lehtonen, M., The production of aroma compounds by yeast. J. Inst. Brew. 1979, 85, 149-156. Suzuki, K., 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. J. Inst. Brew. 2011, 117, 131-155. Suzuki, K.; Iijima, K.; Sakamoto, K.; Sami, M.; Yamashita, H., A review of hop resistance in beer spoilage lactic acid bacteria. J. Inst. Brew. 2006, 112, 173-191. Thompson-Witrick, K. A.; Rouseff, R. L.; Cadawallader, K. R.; Duncan, S. E.; Eigel, W. N.; Tanko, J. M.; O'Keefe, S. F., Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid-liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer. J. Food Sci. 2015, 80, 571-576. Tressl, R.; Friese, L.; Fendesack, F.; Koeppler, H., Gas chromatographic-mass spectrometric investigation of hop aroma constituents in beer. J. Agr. Food Chem. 1978, 26, 1422-1426. Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G., The chemistry of beer aging – a critical review. Food Chem. 2006, 95, 357-381. Verstrepen, K. J.; Derdelinckx, G.; Dufour, J. P.; Winderickx, J.; Thevelein, J. M.; Pretorius, I. S.; Delvaux, F. R., Flavor-active esters: adding fruitiness to beer. J. Biosci. Bioeng. 2003, 96, 110-118. Wei, A.; Mura, K.; Shibamoto, T., Antioxidative activity of volatile chemicals extracted from beer. J. Agr. Food Chem. 2001, 49, 4097-4101. Welke, J. E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C., Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013, 141, 3897-3905. Whiting, G. C., Organic-Acid Metabolism of Yeasts during Fermentation of Alcoholic Beverages - Review. J. Inst. Brew. 1976, 82, 84-92. Yang, X.; Peppard, T., Solid-Phase Microextraction for Flavor Analysis. J. Agr. Food Chem. 1994, 42, 1925-1930. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71925 | - |
| dc.description.abstract | 本研究的目的在於建立一套分析啤酒中重要香氣成分的方法,而利用此方法分析市售的臺灣生啤酒。根據文獻回顧,Flavour Dilution (FD) factor,跟 Odour Activity Value (OAV) 可以顯示一個芳香化合物對啤酒香味的貢獻。因此,本研究以十種在啤酒中FD質與OAV較高的化合物作爲目標,建立一個分析方法。研究中探討了有機溶劑萃取的選擇,發現乙醚能夠有效的萃取目標化合物,而萃取率高達 94 醚能夠有效的。跟二氯甲烷相對之下,乙醚也能夠減少目標化合物在減壓濃縮中的流失,降低定量計算的誤差。探討了各個目標化合物在減壓濃縮中不同程度的流失後,此分析方法在計算中以各個化合物的揮發性做調整,確保分析方法的準確性。借由以上的方法,本研究利用 GC-MS分析了臺灣烟酒公司18天生啤酒的芳香化合物,發現結果在一般啤酒的正常範圍内。分析結果顯示,ethyl acetate 的濃度為25.37±0.54 mg/l, ethyl butanoate 低於計算極限,isobutanol 的濃度為14.07±0.34 mg/l,isoamyl acetate 的濃度為1.51±0.05 mg/l,isoamyl alcohol的濃度為60.21±1.61 mg/l,ethyl hexanoate的濃度為0.48±0.02 mg/l,ethyl octanoate的濃度為0.57±0.02 mg/l,3-methylthio 1-propanol的濃度為2.10±0.03 mg/l,2-phenylethyl acetate的濃度為0.44±0.01 mg/l,2-phenylethyl alcohol的濃度為23.89±0.43 mg/l。此外,該研究也探討了這十種芳香化合物經過存放的變化,發現各個化合物都有減低的現象,尤其在第18天之後。 | zh_TW |
| dc.description.abstract | The objective of this study is to establish a protocol to quantitate important aroma compounds found in beer and subsequently, to conduct the analysis on draft beer sold commercially in Taiwan. Flavour dilution (FD) factor and odour activity value (OAV) are generally recognized as a reliable indicator of a compound’s contribution to aroma. Therefore, 10 aroma compounds which were commonly observed to have high OAV and FD factors in beer were chosen to be the target analytes from which a protocol for their analysis could be established. Diethyl ether was found to be a suitable choice of solvent for the extraction of the target analytes in beer with extraction rates ranging from 94 to 100%. The analyte loss during solvent removal was also found to be less than that when using dichloromethane, therefore reducing the margin of error during quantitation. By studying the difference in volatilities of the target analytes, the differences in analyte loss during solvent removal was able to be accounted for by dividing the analytes into low, medium and high volatilities. Using this method, 18 day draft beer from Taiwan Tobacco and Liquor Corporation was analysed using Gas Chromatography – Mass Spectrometry (GC-MS) and the concentrations of the target analytes were found to be comparable to that of typical beers. The concentration of ethyl acetate was found to be 25.37±0.54 mg/l, ethyl butanoate was too trace to measure, isobutanol was 14.07±0.34 mg/l, isoamyl acetate was 1.51±0.05 mg/l, isoamyl alcohol was 60.21±1.61 mg/l, ethyl hexanoate was 0.48±0.02 mg/l, ethyl octanoate was 0.57±0.02 mg/l, 3-methylthio 1-propanol was 2.10±0.03 mg/l, 2-phenylethyl acetate was 0.44±0.01 mg/l and 2-phenylethyl alcohol was 23.89±0.43 mg/l. The change in these aroma compounds were tracked over and beyond the mandated shelf life of 18 day draft beer and it was found that they exhibited a general decreasing trend, especially once past the 18 day mark. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:15:12Z (GMT). No. of bitstreams: 1 ntu-107-R05641043-1.pdf: 3663017 bytes, checksum: c6d0d8badbfb685c2e7e0368d14c81e9 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Acknowledgement i
Abstract ii 摘要 iii List of Figures viii List of Tables xi 1.0 Introduction 1 2.0 Literature Review 2 2.1 Alcoholic beverages 2 2.1.1 Fermented and distilled alcoholic beverages 2 2.1.2 Beer 3 2.2 Beer brewing 4 2.2.1 Ale and lager 4 2.2.2 Malting 7 2.2.3 Mashing 7 2.2.4 Addition of hops 9 2.2.5 Fermentation 9 2.3 Major aroma compounds in beer 10 2.3.1 Aroma profile 10 2.3.2 Alcoholic fermentation 12 2.3.3 Alcohols 14 2.3.4 Esters 16 2.3.5 Acids 18 2.3.6 Carbonyl and sulphur compounds 19 2.4 Determining importance of aroma compounds 19 2.4.1 Significant contributors 19 2.4.2 Aroma extract dilution analysis 20 2.4.3 Odour activity value 20 2.4.4 Important aroma compounds in beer 20 2.5 Gas chromatography 23 2.5.1 Extraction methods 23 2.5.2 Solvent extraction 23 2.5.3 Solid-phase microextraction 23 3.0 Materials and Methods 25 3.1 Materials 25 3.1.1 Beer samples 25 3.1.2 Beer brewing materials 25 3.1.3 Chemicals 25 3.1.4 Chemicals for extraction 26 3.1.5 Equipment 26 3.1.6 Gas chromatography 27 3.2 Methods 28 3.2.1 Starter culture 28 3.2.2 Beer fermentation 28 3.2.3 Beer bottling 29 3.2.4 Preparation of calibration standards for extraction and evaporation tests 29 3.2.5 Study on extraction yield of target analytes 30 3.2.6 Study on volatility of target analytes 30 3.2.7 Expected concentrations of aroma compounds in beer 30 3.2.8 Preparation of standards for calibration curves 32 3.2.9 Preparation of internal standard 34 3.2.10 Extraction of beer volatiles 34 3.2.11 Evaporation of solvent extract of beer 34 3.2.12 Data analysis 34 3.3 Experimental design 35 3.3.1 Thesis framework 35 3.3.2 Determination of target analytes 36 3.3.3 Optimisation of quantitation process 36 3.3.4 Quantitation of aroma compounds 37 4.0 Results and Discussion 38 4.1 Choice of solvent for aroma compound extraction 38 4.1.1 Loss of analytes through evaporation process 38 4.1.2 Diethyl ether vs dichloromethane as solvent. 39 4.2 Establishment of quantitation protocol 44 4.2.1 Aroma compounds in beer 44 4.2.2 Target analytes for quantitation 49 4.2.3 Extraction yield of target analytes 50 4.2.4 Volatility of target analytes during evaporation 53 4.2.5 Quantitation protocol 58 4.3 Quantitation of aroma compounds in beer 60 4.3.1 Aroma compounds in 18 day draft beer 60 4.3.2 Changes in aroma compounds of 18 day draft beer over time 64 4.3.3 Potential impact of study 68 4.3.4 Co-elutions 70 5.0 Conclusion 72 6.0 Future Work 73 7.0 Reference 74 Appendix A xiii Appendix B xxiv Curriculum Vitae xxxii | |
| dc.language.iso | en | |
| dc.subject | 芳香化合物 | zh_TW |
| dc.subject | 啤酒 | zh_TW |
| dc.subject | 發性化合物 | zh_TW |
| dc.subject | GC-MS | zh_TW |
| dc.subject | Aroma Compounds | en |
| dc.subject | Volatiles | en |
| dc.subject | GC-MS | en |
| dc.subject | Beer | en |
| dc.title | 啤酒芳香化合物之分析 | zh_TW |
| dc.title | Analysis of the Aroma Compounds of Beer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鄭光成(Kuan-Chen Cheng) | |
| dc.contributor.oralexamcommittee | 周正俊,潘崇良,蔡國珍 | |
| dc.subject.keyword | 啤酒,芳香化合物,發性化合物,GC-MS, | zh_TW |
| dc.subject.keyword | Beer,Aroma Compounds,Volatiles,GC-MS, | en |
| dc.relation.page | 104 | |
| dc.identifier.doi | 10.6342/NTU201804101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-09-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
