請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉安義 | |
| dc.contributor.author | Lucy Deng | en |
| dc.contributor.author | 鄧璐 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:12:36Z | - |
| dc.date.available | 2021-10-12 | |
| dc.date.copyright | 2018-10-12 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-10-09 | |
| dc.identifier.citation | 于達元,2008。濃度對介質研磨纖維素流變性質的影響。臺灣大學食品科技研究所碩士學位論文,台北,台灣。
行政院衛生福利部食品藥物管理署,2013。公告食品化學檢驗方法之確效規範。行 政院衛生福利部食品藥物管理署102年9月9日第二次修正。 Abd El Mohsen, M. M.; Kuhnle, G.; Rechner, A. R.; Schroeter, H.; Rose, S.; Jenner, P.; Rice-Evans, C. A. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 2002, 33, 1693-702. Adelakun, O. E.; Metcalfe, D.; Tshabalala, P.; Stafford, B.; Oni, B. The effect of pectinase enzyme on some quality attributes of a Nigerian mango juice. Nutrition & Food Science 2013, 43, 374-383. Afanas'ev, I. B.; Dorozhko, A. I.; Brodskii, A. V.; Kostyuk, V. A.; Potapovitch, A. I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 1989, 38, 1763-9. Ainsworth, E. A.; Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2007, 2, 875-7. Alexander, L. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 2002, 53, 2039-2055 Alia, M.; Mateos, R.; Ramos, S.; Lecumberri, E.; Bravo, L.; Goya, L. Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 2006, 45, 19-28. Arranz, S.; Saura-Calixto, F.; Shaha, S.; Kroon, P. A. High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agric Food Chem 2009, 57, 7298-7303. Bindon, K. A.; Smith, P. A.; Holt, H.; Kennedy, J. A. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. J Agric Food Chem 2010, 58, 10736-10746. Bravo, L.; Abia, R.; Sauracalixto, F. Polyphenols as Dietary Fiber Associated Compounds - Comparative-Study on in-Vivo and in-Vitro Properties. J Agric Food Chem 1994, 42, 1481-7. Brindza, J.; Grygorieva, O.; Abrahamová, V.; Karnatovská, M.; Bleha, R. Morphological characteristic of fruit, drupes and seeds genotypes of Ziziphus jujuba Mill. Potravinarstvo 2014, 8. Bunzel, M. Chemistry and occurrence of hydroxycinnamate oligomers. Phytochemistry Reviews 2009, 9, 47-64. Burhan-Uddin, M.; Hussain, I. Development of diversified technology for Jujube (Ziziphus jujuba L) processing and preservation. World J. Dairy & Food Sci 2012, 7, 74-8. Burr, S. J.; Fry, S. C. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds. Plant J 2009, 58, 554-567. Canham, L. T. Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 2007, 18, 185704. Chen, C. J.; Shen, Y. C.; Yeh, A. I. Physico-chemical characteristics of media-milled corn starch. J Agric Food Chem 2010, 58, 9083-9091. Chen, J.; Liu, X.; Li, Z.; Qi, A.; Yao, P.; Zhou, Z.; Dong, T. T. X.; Tsim, K. W. K. A Review of Dietary Ziziphus jujuba Fruit (Jujube): Developing Health Food Supplements for Brain Protection. Evid Based Complement Alternat Med 2017, 3019568. Cheng, D.; Zhu, C.; Cao, J.; Jiang, W. The protective effects of polyphenols from jujube peel (Ziziphus Jujube Mill) on isoproterenol-induced myocardial ischemia and aluminum-induced oxidative damage in rats. Food Chem Toxicol 2012, 50, 1302-8. Chevallier, A. The encyclopedia of medicinal plants: An excellent guide to over 500 of the more well known medicinal herbs from around the world 1996, Dorling. Kindersley, London, UK. D'Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015, 106, 256-271. Dai, X. D., Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol. Pharm. Bull 2013, 36, 788-795. Deschner, E. E.; Ruperto, J.; Wong, G.; Newmark, H. L. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 1991, 12, 1193-6. Ding, S.; Wang, R.; Shan, Y.; Li, G.; Ou, S. Changes in pectin characteristics during the ripening of jujube fruit. J Sci Food Agric 2017, 97, 4151-9. Ebrahimi, S.; Ashkani-Esfahani, S.; Poormahmudi, A. Investigating the efficacy of. Ziziphus jujuba on neonatal jaundice. ran J Pediatr 2011, 21(3), 320–4. Engler, M. B.; Engler, M. M.; Chen, C. Y.; Malloy, M. J.; Browne, A.; Chiu, E. Y.; Kwak, H.-K.; Milbury, P.; Paul, S. M.; Blumberg, J.; Mietus-Snyder, M. L. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in Healthy Adults. J Am Coll Nutr 2004, 23, 197-204. Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol 2000, 56, 545-553. Everette, J. D.; Bryant, Q. M.; Green, A. M.; Abbey, Y. A.; Wangila, G. W.; Walker, R. B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J Agric Food Chem 2010, 58, 8139-8144. Fabjan, N.; Rode, J.; Kosir, I. J.; Wang, Z. H.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 2003, 51, 6452-5. Faulds, C. B.; Williamson, G. The role of hydroxycinnamates in the plant cell wall. J Sci Food Agric 1999, 79, 393-5. Galiotou-Panayotou, M.; Kapantai, M.; Kalantzi, O. Growth conditions of Aspergillus sp. ATHUM-3482 for polygalacturonase production. Appl Microbiol Biotechnol 1997, 47, 425-9. Gao, Q. H.; Wu, C. S.; Wang, M. The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem 2013, 61, 3351-3363. Gao, Q. H.; Wu, C. S.; Wang, M.; Xu, B. N.; Du, L. J. Effect of drying of jujubes ( Ziziphus jujuba Mill.) on the contents of sugars, organic acids, alpha-tocopherol, beta-carotene, and phenolic compounds. J Agric Food Chem 2012a, 60, 9642-8. Gao, Q. H.; Wu, C. S.; Yu, J. G.; Wang, M.; Ma, Y. J.; Li, C. L. Textural characteristic, antioxidant activity, sugar, organic acid, and phenolic profiles of 10 promising jujube (Ziziphus jujuba Mill.) selections. J Food Sci 2012b, 77, C1218-1225. Gensi, R. M. K., W.; Carasco, J.F. Traditional production and characteristics of banana juice in Uganda. African Crop Science Conference Proceedings 1994, 1, 356-9. Ghosh, I.; Schenck, D.; Bose, S.; Ruegger, C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci 2012, 47, 718-728. Goñi, I.; Jiménez-Escrig, A.; Gudiel, M.; Saura-Calixto, F. D. Artichoke (Cynara scolymus L) modifies bacterial enzymatic activities and antioxidant status in rat cecum. Nutr Res 2005, 25, 607-615. Goñi, I.; Serrano, J. The intake of dietary fiber from grape seeds modifies the antioxidant status in rat cecum. J Sci Food Agric 2005, 85, 1877-1881. González-Sarrías, A.; Espín, J. C.; Tomás-Barberán, F. A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends in Food Science & Technology 2017, 69, 281-8. Guardia, T.; Rotelli, A. E.; Juarez, A. O.; Pelzer, L. E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001, 56, 683-7. Gunduz, K.; Saracoglu, O. Changes in chemical composition, total phenolic content and antioxidant activities of jujube (ziziphus jujuba mill.) fruits at different maturation stages. Acta Scientiarum Polonorum-Hortorum Cultus 2014, 13, 187-195. Hernández, F.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, Á. A.; Legua, P. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujubaMill.) fruits. J Sci Food Agric 2016, 96, 2682-2691. Hudina, M.; Liu, M.; Veberic, R.; Stampar, F.; Colaric, M. Phenolic compounds in the fruit of different varieties of Chinese jujube (Ziziphus jujubaMill.). J Hortic Sci Biotechnol 2015, 83, 305-8. Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J Food Compos Anal 2008, 21, 589-598. Janbaz, K. H.; Saeed, S. A.; Gilani, A. H. Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents. Fitoterapia 2002, 73, 557-63. Jayani, R. S.; Saxena, S.; Gupta, R. Microbial pectinolytic enzymes: A review. Process Biochemistry 2005, 40, 2931-2944. Jia, Z.; Tang, M. C.; Wu, J. M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 1999, 64, 555-9. Kader, A. L., Y.; Chordes, A postharvest resporation ethylene production and compositional changes of chinese jujube fruits. HortScience 1982, 17, 678-9. Kamalakkannan, N.; Prince, P. S. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 2006, 98, 97-103. Kesisoglou, F.; Panmai, S.; Wu, Y. Nanosizing — Oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews 2007, 59, 631-644. Khatri, B. P.; Bhattarai, T.; Shrestha, S.; Maharjan, J. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal. Springerplus 2015, 4, 488. Kou, X.; Chen, Q.; Li, X.; Li, M.; Kan, C.; Chen, B.; Zhang, Y.; Xue, Z. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars. Food Chem 2015, 173, 1037-1044. Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem 2006, 98, 508-512. La Casa, C.; Villegas, I.; Alarcon de la Lastra, C.; Motilva, V.; Martin Calero, M. J. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacol 2000, 71, 45-53. Le Bourvellec, C.; Bouchet, B.; Renard, C. M. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochim Biophys Acta 2005, 1725, 10-8. Le Bourvellec, C.; Guyot, S.; Renard, C. M. Non-covalent interaction between procyanidins and apple cell wall material: Part I. Effect of some environmental parameters. Biochim Biophys Acta 2004, 1672, 192-202. Li, J.; Fan, L.; Ding, S.; Ding, X. Nutritional composition of five cultivars of chinese jujube. Food Chem 2007, 103, 454-460. Li, S.-g.; Mao, Z.-y.; Wang, P.; Zhang, Y.; Sun, P.-p.; Xu, Q.; Yu, J. Brewing Jujube brandy with Daqu and yeast by solid-state fermentation. J Food Process Eng 2016, 39, 157-165. Liimatainen, H.; Sirviö, J.; Haapala, A.; Hormi, O.; Niinimäki, J. Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydrate Polymers 2011, 83, 2005-2010. Liu, D.-h.; Ye, X.-q.; Jiang, Y.-m. Chinses Dates: A Traditional Functional Food. Boca Raron, FL: CRC Press 2016. López-Oliva, M. E.; Agis-Torres, A.; García-Palencia, P.; Goñi, I.; Muñoz-Martínez, E. Induction of epithelial hypoplasia in rat cecal and distal colonic mucosa by grape antioxidant dietary fiber. Nutrition Research 2006, 26, 651-8. López -Oliva, M. E.; Agis-Torres, A.; Goni, I.; Munoz-Martinez, E. Grape antioxidant dietary fibre reduced apoptosis and induced a pro-reducing shift in the glutathione redox state of the rat proximal colonic mucosa. Br J Nutr 2010, 103, 1110-7. Lu, M.; Ho, C.-T.; Huang, Q. Improving quercetin dissolution and bioaccessibility with reduced crystallite sizes through media milling technique. Journal of Functional Foods 2017, 37, 138-146. Luximon-Ramma, A.; Bahorun, T.; Crozier, A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J Sci Food Agric 2003, 83, 496-502. Manach, C.; Morand, C.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Bioavailability of rutin and quercetin in rats. FEBS Letters 1997, 409, 12-6. Matic, P.; Sabljic, M.; Jakobek, L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J AOAC Int 2017, 100, 1795-1803. Matthews, S. M., I.; Scalbert, A.; Donelly, D Extractable and non-extractable proanthocyanidin barks. Phytochemistry 1997, 45, 405-410. Merisko-Liversidge, E.; Liversidge, G. G. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011, 63, 427-440. Merisko-Liversidge, E.; Liversidge, G. G.; Cooper, E. R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003, 18, 113-120. Michaelis, L.; Menten, M. L.; Johnson, K. A.; Goody, R. S. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 2011, 50, 8264-9. Mojsov, K. D., Aspergillus enzymes for food industries. In New and Future Developments in Microbial Biotechnology and Bioengineering, 2016, 215-222. Naftali, T.; Feingelernt, H.; Lesin, H.; Rauchwarger, A.; Koniko, F.M. Ziziphus jujube. extract for the treatment of chronic idiopathic constipation: a controlled clinical trial. Digestion 2009, 78(4), 224–8. Nie, P.; Wang, X.; Hu, L.; Zhang, H.; Zhang, J.; Zhang, Z.; Zhang, L. The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development. Plant Cell Physiol 2010, 51, 1007-1018. Nishitama, I. Y., Y.; Yamanaka, M.; Shimohashi, A.; Fukuda, T.; Oota, T Varietal Difference in Vitamin C Content in the Fruit of Kiwifruit and Other Actinidia Species. J Agric Food Chem 2004, 52, 5472-5. Pareek, S. Nutritional composition of jujube fruit. Emir J Food Agric 2013, 25, 463-470. Pérez-Jiménez, J. A., S.; Tabernero, M.; D ́ıaz- Rubio, M.E.; Serranob, J.; Gon ̃ib, I.; Saura-Calixtoa, F Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res Int 2008, 41, 274-285. Pérez-Jiménez, J.; Arranz, S.; Saura-Calixto, F. Proanthocyanidin content in foods is largely underestimated in the literature data: An approach to quantification of the missing proanthocyanidins. Food Res Int 2009, 42, 1381-8. Pinelo, M.; Arnous, A.; Meyer, A. S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 2006, 17, 579-590. Pozuelo, M. J.; Agis-Torres, A.; Hervert-Hernandez, D.; Elvira Lopez-Oliva, M.; Munoz-Martinez, E.; Rotger, R.; Goni, I. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. J Food Sci 2012, 77, H59-62. Rangarajan, V.; Rajasekharan, M.; Ravichandran, R.; Sriganesh, K.; Vaitheeswaran, V. Pectinase production from orange peel extract and dried orange peel solid as substrates using aspergillus niger. IJBB 2010, 6, 445-453. Rein, D.; Lotito, S.; Holt, R. R.; Keen, C. L.; Schmitz, H. H.; Fraga, C. G. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr 2000, 130, 2109S-2114S. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996, 20, 933-956. Richelle, M.; Tavazzi, I.; Enslen, M.; Offord, E. A. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr 1999, 53, 22-6. Robin.; Kumar, S. S., D.; Sharma, H.K. Optimization of enzymatic hydrolysis conditions for enhanced juice recovery with optimum quality from alu bukhara (prunus domestica l.) Fruit. IJAREAS 2013, 2, 50-67. Sáyago-Ayerdia, S. G. B., A.; Goñia, I Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT - Food Sci Technol 2009, 42, 971-6. Sáyago-Ayerdi, S. G.; Brenes, A.; Viveros, A.; Goñi, I. Antioxidative effect of dietary grape pomace concentrate on lipid oxidation of chilled and long-term frozen stored chicken patties. Meat Science 2009, 83, 528-533. Sabzghabaee, A.M.; Khayam, I.; Kelishadi R. Effect of Ziziphus jujuba fruits on dyslipidemia in obese adolescents: a triple-masked randomized controlled. clinical trial. Medical Archives 2013, 67(3), 156. Sagu, S. T.; Nso, E. J.; Karmakar, S.; De, S. Optimisation of low temperature extraction of banana juice using commercial pectinase. Food Chem 2014, 151, 182-190. Sakai, T.; Sakamoto, T.; Hallaert, J.; Vandamme, E. J., Pectin, pectinase, and protopectinase: production, properties, and applications. In Advances in Applied Microbiology, Neidleman, S.; Laskin, A. I., Eds. Academic Press: 1993; Vol. 39, 213-294. Sánchez-Alonso, I.; Jiménez-Escrig, A.; Saura-Calixto, F.; Borderías, A. J. Antioxidant protection of white grape pomace on restructured fish products during frozen storage. LWT - Food Sci Technol 2008, 41, 42-50. Sánchez-Alonso, I.; Solas, M. T.; Borderias, A. J. Physical study of minced fish muscle with a white-grape by-product added as an ingredient. J Food Sci 2007, 72, E94-101. Santamaria, R. I.; Reyes-Duarte, M. D.; Barzana, E.; Fernando, D.; Gama, F. M.; Mota, M.; Lopez-Munguia, A. Selective enzyme-mediated extraction of capsaicinoids and carotenoids from chili guajillo puya (Capsicum annuum L.) using ethanol as solvent. J Agric Food Chem 2000, 48, 3063-7. Sardar, M.; Roy, I.; Gupta, M. N. A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan. Biotechnol Prog 2003, 19, 1654-8. Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. J Agric Food Chem 2011, 59, 43-9. Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C. L.; Hollenberg, N. K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H. H.; Kelm, M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 2006, 103, 1024-9. Shams Najafabadi, N.; Sahari, M. A.; Barzegar, M. Hamidi Esfahani, Z. Effects of concentration method and storage time on some bioactive compounds and color of jujube (Ziziphus jujuba var vulgaris) concentrate. J Food Sci and Technol 2017, 54, 2947-2955. Sharma, S.K.; LeMaguer, M.; Lycopene in tomatoes and tomato pulp fractions. J Food Sci 1996, 2, 107–113. Sheu, M. J.; Lin, J. W.; Shyr, J. J. Turbidity stability of comminuted kumquat (Fortunella margarita Swingle) juice. J. Taiwan Soc. Hort. Sci. 2007, 53, 75-86. Srivastava, S.; Somasagara, R. R.; Hegde, M.; Nishana, M.; Tadi, S. K.; Srivastava, M.; Choudhary, B.; Raghavan, S. C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 2016, 6, 24049. Sun, R. C.; Sun, X. F.; Wang, S. Q.; Zhu, W.; Wang, X. Y. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Industrial Crops and Products 2002, 15, 179-188. Sun, Y.; Wang, Z.; Wu, J.; Chen, F.; Liao, X.; Hu, X. Optimising enzymatic maceration in pretreatment of carrot juice concentrate by response surface methodology. Int J Food Sci Technol 2006, 41, 1082-9. Tabilo-Munizaga, G.; Barbosa-Canovas G. V. Rheology for the food industry. J Food Eng 2005, 67, 147-156. Ting, S. V. D., E.J The carbonhydrates in peel of oranges and grapefruit. J Food Sci 1961, 26, 146-152. Tow, W. W.; Premier, R.; Jing, H.; Ajlouni, S. Antioxidant and antiproliferation effects of extractable and nonextractable polyphenols isolated from apple waste using different extraction methods. J Food Sci 2011, 76, T163-172. Vidrih, R.; Ulrih, N. P.; Zlatic, E.; Hribar, J.; Prgomet, Z. The nutritional and physico-chemical properties of ripe (Ziziphus jujuba) fruits grown in Istria. Acta Hortic 2009, 840, 525-8. Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult Sci 2011, 90, 566-578. Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.; Pan, Z. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT - Food Sci Technol 2016, 66, 56-62. Wang, C.; Cheng, D.; Cao, J.; Jiang, W. Antioxidant capacity and chemical constituents of Chinese jujube (Ziziphus jujuba Mill.) at different ripening stages. Food Sci Biotechnol 2013, 22, 639-644. Wang, J. F.; Schramm, D. D.; Holt, R. R.; Ensunsa, J. L.; Fraga, C. G.; Schmitz, H. H.; Keen, C. L. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr 2000, 130, 2115-9. Watson, R.R. Polyphenols n Plants: Isolation, Purification and Extract Preparation. Academic Press 2014, 205-218. Wilkins, M. R.; Widmer, W. W.; Grohmann, K.; Cameron, R. G. Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour Technol 2007, 98, 1596-1601. Wojdylo, A.; Carbonell-Barrachina, A. A.; Legua, P.; Hernandez, F. Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube Mill.) fruits. Food Chem 2016a, 201, 307-314. Wojdylo, A.; Figiel, A.; Legua, P.; Lech, K.; Carbonell-Barrachina, A. A.; Hernandez, F. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem 2016b, 207, 170-9. Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligo-saccharides. Food Hydrocolloids 2011, 25, 170-9. Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT - Food Sci Technol 2008, 41, 1060-6. Yao, S. Past, present, and future of Jujubes—Chinese dates in the United States. Hortscience 2013, 48(6), 672-680. Yeh, A.-I.; Huang, Y.-C.; Chen, S. H. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers 2010, 79, 192-9. Yilmaz, K.; Ercisli, S.; Zengin, Y.; Sengul, M.; Kafkas, E. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem 2009, 114, 408-412. Yu, J.; Vasanthan, T.; Temelli, F. Analysis of Phenolic Acids in Barley by High-Performance Liquid Chromatography. J Agric Food Chem 2001, 49, 4352-8. Zhang, W.; Zhang, J.; Xia, W. The preparation of chitosan nanoparticles by wet media milling. Int J Food Sci Tech 2012, 47, 2266-2272. Zhao, H. X.; Zhang, H. S.; Yang, S. F. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. FSHW 2014, 3, 183-190 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71864 | - |
| dc.description.abstract | 紅棗(Ziziphus jujuba Mill.),是鼠李科(Rhamnaceae)棗屬植物棗樹的果實。東方人栽培、食用紅棗已有三千多年的歷史,傳統中醫認為紅棗可“補虛益氣、養血安神、健脾和胃”。紅棗中主要的功能性化合物為多酚(polyphenol)和黃酮(flavanoid),提供抗氧化、抗發炎、提高免疫力等作用。本研究因食材在地性、取得方便性以及來源明確性,選擇台灣公館鄉的雞心棗(鮮棗)進行研究。提取紅棗多酚的常用方法是熱水萃取法和超音波萃取法,多酚在植物體內的存在形式有自由態和包覆結合態,需要酸鹼分段式萃取結合態多酚。熱水萃取法因高溫對酚類物質造成破壞,超音波和酸鹼分段式萃取法繁瑣、不適於量產。本研究比較介質研磨和果膠酶處理鮮棗漿,對紅棗中多酚釋出的影響。結果顯示,介質研磨180 min懸浮液粒徑從240.20~272.47 μm下降至25.79 μm,總酚含量最高增加46.17%,總黃酮含量最高增加76.15%。果膠酶處理後懸浮液粒徑下降至150.9~182.1 μm,固形物含量11.77%的組別黏度均下降50%以上,總酚和總黃酮含量分別增加16.01%和9.92%。以單一多酚類物質之含量而言,介質研磨120 min表兒茶素和芸香苷分別增加46.8%和54.3%,接近總酚含量增加百分比。果膠酶處理後表兒茶素和芸香苷含量分別增加9.92%和7.02%。綜上所述,介質研磨可有效減小鮮棗漿粒徑、破壞植物細胞結構,增加紅棗總酚的釋出;酵素處理可增加紅棗總酚釋出,但仍需經濟分析。本研究的成果為紅棗的高附加價值之加工基礎。 | zh_TW |
| dc.description.abstract | Jujube (Ziziphus jujuba Mill.) is the fruit of jujube tree of the Rhamnaceae family, which has been cultivated and consumed jujube in oriental regions for more than 3,000 years. In traditional Chinese medicine, it is believed that jujube can “replenish vital energy, nourish blood and calm, strengthen the spleen and stomach”. The main bioactive compounds are polyphenols and flavonoids, which provide antioxidant, anti-inflammatory and immune-enhancing effects. In this study, base on locality, convenience and source clarity of the sample, we chose fresh jujube fruit from Miaoli, Taiwan. Traditionaly, jujube extraction methods are hot water extraction and ultrasonic extraction. Polyphenols presence in plants in three types: free, trapped and bound. Therefore, it is necessary to extract trapped and bound type polyphenols by acid-base method. The hot water extraction method causes damage to phenolic compounds due to high temperature, the ultrasonic and acid-base extraction is too complicated, to be commerciallized. In this study, fresh jujube pulp was treated by media milling or pectinase to destruct plant cells, to release polyphenols. The particle size of the suspension decreased from 240.2~272.47 μm to 25.79 μm after 180 min-media milling with an increase in total phenolic content by 46.17% and an increase in the total flavonoid content by 76.15%. Pectinase resulted in the decrease in particle size (150.9~182.1 μm) and viscosity (more than 50%) of 11.77% solid content. In the meanwhile, the content of total polyphenols and flavonoids were increased by 16.01% and 9.92%, respectively. Epicatechin and lutin increased by 46.8% and 54.3% respectively after 120 min-media milling. After pectinase treatment, the epicatechin and lutin content increased by 9.92% and 7.02%, respectively. Media milling could effectively reduce the particle size of fresh jujube pulp, destroy plant cell structure, and increase the release of total phenols from jujube; enzyme treatment has potential as a processing method to increase the release of total phenols from jujube. The result of this research would provide a foundation for processing of high value jujube. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:12:36Z (GMT). No. of bitstreams: 1 ntu-107-R05641039-1.pdf: 113711226 bytes, checksum: 8b69ad07626a1e21e023e56a1f87a190 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
謝誌 I 口試委員會審定書 III 摘要 1 Abstract 2 目錄 4 圖目錄 8 表目錄 11 壹、前言 13 貳、文獻回顧 15 第一章、紅棗簡介 15 1.1 棗的傳播 15 1.2 鮮棗植物細胞型態 16 1.3 棗的顏色變化 17 1.4 棗的主要成分 19 1.4.1 新鮮紅棗 19 1.4.2 紅棗乾 21 2.1 常見功能性成分 21 2.2 不同成熟期棗的變化 22 2.3 實際生產作業 25 第三章:紅棗多酚 25 3.1紅棗多酚組成 25 3.2 可提取多酚(Extractable polyphenols,EPP) & 不可提取多酚 (Non extractable polyphenols,NEPP) 28 3.3分離NEPP方法 30 3.4 不可提取多酚(NEPP)的發展 34 第四章、紅棗多酚 36 4.1 紅棗多酚組成 36 4.1.1 槲皮素與芸香苷 38 4.1.2 表兒茶素 40 4.2 紅棗多酚腦部保護作用 41 第五章、加工方法 44 5.1 現有加工方法 44 5.2 果膠酶 (pectinase) 44 5.2.1 果膠 44 5.2.2 果膠酶的特性 45 5.2.3 果膠酶的應用 46 5.3 合併使用酵素 48 5.4 介質研磨(media milling) 49 5.4.1 介質研磨的原理 49 5.4.2 介質研磨的應用 51 第六章、乾燥方式 52 6.1常用乾燥方法 52 6.2不同乾燥方式比較 53 叁、實驗架構 56 肆、材料與方法 57 第一章、實驗材料 57 第二章、實驗藥品與溶劑 57 2.1 標準品 57 2.2 藥品 57 2.3 溶劑 57 第三章、器材 58 第四章、儀器設備 58 第五章、實驗方法 62 5.1 樣品製備 62 5.1.1 介質研磨鮮棗懸浮液之製備 62 5.1.2 酵素處理鮮棗漿之製備 64 5.1.3 鮮棗之乾燥 65 5.1.4 鮮棗乾粉之製備 65 5.2 理化性質分析 65 5.2.1 基本成分分析 65 (1) 水分含量測定 65 (2) 粗蛋白含量測定 66 (3) 粗脂肪含量測定 67 (4) 粗灰分含量測定 67 (5) 總醣含量測定(酚 – 硫酸法) 68 (6) 總膳食纖維含量測定 68 5.2.2 粒徑分析 70 5.2.3 型態觀察 71 5.2.4 黏度 71 5.2.5 酸鹼值 72 5.3 生理活性成分分析 72 5.3.1 總酚 72 5.3.2 總黃酮 73 Fig. 28. Rutin standard curve. 74 5.3.3 表兒茶素(epicatechin)與芸香苷(rutin) 74 5.4 統計分析 78 伍、結果與討論 79 第一章、實驗結果 79 1.1 理化性質分析 79 1.1.1 基本成分分析 79 1.1.2 粒徑分析 80 1.1.3 型態觀察 90 1.1.4 黏度 100 1.1.5 酸鹼值 103 1.2 生物活性成分分析 104 1.2.1 總酚含量 104 1.2.2 總黃酮含量 108 1.3 介質研磨和酵素處理鮮棗懸浮液之表兒茶素、芸香苷含量 112 1.3.1 高效液相層析法分析條件之確效評估 112 1.3.2 表兒茶素、芸香苷含量分析 116 陸、結論 122 柒、參考文獻 123 捌、附錄 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酵素 | zh_TW |
| dc.subject | 奈米研磨 | zh_TW |
| dc.subject | 多酚 | zh_TW |
| dc.subject | 粒徑 | zh_TW |
| dc.subject | 紅棗 | zh_TW |
| dc.subject | polyphenols | en |
| dc.subject | red dates | en |
| dc.subject | particle size | en |
| dc.subject | enzymes | en |
| dc.subject | nano grinding | en |
| dc.title | 介質研磨與果膠酶對紅棗多酚釋出的影響 | zh_TW |
| dc.title | Media milling and pectinase affects the releasing of polyphenol from Jujube | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳炳輝,江伯源,陳時欣,張月櫻 | |
| dc.subject.keyword | 紅棗,多酚,奈米研磨,酵素,粒徑, | zh_TW |
| dc.subject.keyword | red dates,polyphenols,nano grinding,enzymes,particle size, | en |
| dc.relation.page | 141 | |
| dc.identifier.doi | 10.6342/NTU201804187 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-10-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 111.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
