Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋
dc.contributor.authorPo-Hsien Chengen
dc.contributor.author鄭柏賢zh_TW
dc.date.accessioned2021-06-17T06:11:17Z-
dc.date.available2023-11-08
dc.date.copyright2018-11-08
dc.date.issued2018
dc.date.submitted2018-10-30
dc.identifier.citation1 Schaller, R. R. Moore's law: past, present and future. IEEE spectrum 34, 52-59 (1997).
2 Hiao, X. Introduction to semiconductor manufacturing technology. Prentice Hall (2000).
3 Brown, G., Zeitzoff, P., Bersuker, G. & Huff, H. Scaling CMOS: materials & devices. Materials today 7, 20-25 (2004).
4 Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P. & Horowitz, M. CPU DB: recording microprocessor history. Queue 10, 10 (2012).
5 Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat Mater 14, 182-186 (2015).
6 Khan, A. I. Negative capacitance for ultra-low power computing. University of California, Berkeley (2015).
7 Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett 8, 405-410 (2008).
8 Uchino, K. Ferroelectric Devices 2nd Edition. CRC press (2009).
9 Islam Khan, A. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Applied Physics Letters 99, 113501, (2011).
10 Bliznetsov, V. N. et al. Plasma etching for sub-45-nm TaN metal gates on high-k dielectrics. IEEE T Semiconduct M 20, 143-149 (2007).
11 Han, M., Luo, Y., Slater, D. A., Moryl, J. E. & Osgood, R. M. Atomic layer epitaxy (ALE) for ii-vi material growth: A detail study of the surface chemistry. Abstr Pap Am Chem S 213, 184-PHYS (1997).
12 Suntola, T. 'Handbook of Crystal Growth 3.' Thin films and Epitaxy, Part B: Growth (1994).
13 Sitte, R., Dimitrijev, S. & Harrison, H. B. Relaxation of Acceptance Limits (Ral) - a Global Approach for Parametric Yield Control of 0.1-Mu-M Deep-Submicron Mosfet Devices. IEEE T Semiconduct M 8, 374-377 (1995).
14 Vanderbilt, D., Zhao, X. Y. & Ceresoli, D. Structural and dielectric properties of crystalline and amorphous ZrO2. Thin Solid Films 486, 125-128 (2005).
15 Xu, S. & Wang, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res 4, 1013-1098 (2011).
16 Yamabi, S. & Imai, H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem 12, 3773-3778 (2002).
17 George, S. M. Atomic Layer Deposition: An Overview. Chem Rev 110, 111-131 (2010).
18 Profijt, H. B., Potts, S. E., van de Sanden, M. C. M. & Kessels, W. M. M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J Vac Sci Technol A 29 (2011).
19 Sneh, O., Clark-Phelps, R. B., Londergan, A. R., Winkler, J. & Seidel, T. E. Thin film atomic layer deposition equipment for semiconductor processing. Thin Solid Films 402, 248-261 (2002).
20 George, S. M., Ott, A. W. & Klaus, J. W. Surface chemistry for atomic layer growth. J Phys Chem-Us 100, 13121-13131 (1996).
21 Puurunen, R. L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J Appl Phys 97 (2005).
22 Higashi, G. S. & Fleming, C. G. Sequential Surface Chemical-Reaction Limited Growth of High-Quality Al2O3 Dielectrics. Appl Phys Lett 55, 1963-1965 (1989).
23 Soto, C. & Tysoe, W. T. The Reaction Pathway for the Growth of Alumina on High Surface-Area Alumina and in Ultrahigh-Vacuum by a Reaction between Trimethyl Aluminum and Water. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 9, 2686-2695 (1991).
24 Ott, A. W., Klaus, J. W., Johnson, J. M. & George, S. M. Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry. Thin Solid Films 292, 135-144 (1997).
25 Dillon, A. C., Ott, A. W., Way, J. D. & George, S. M. Surface-Chemistry of Al2O3 Deposition Using Al(CH3)3 and H2O in a Binary Reaction Sequence. Surf Sci 322, 230-242 (1995).
26 Widjaja, Y. & Musgrave, C. B. Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition. Appl Phys Lett 80, 3304-3306 (2002).
27 Elam, J. W., Groner, M. D. & George, S. M. Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev Sci Instrum 73, 2981-2987 (2002).
28 Groner, M. D., Fabreguette, F. H., Elam, J. W. & George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem Mater 16, 639-645 (2004).
29 Ritala, M., Leskela, M., Nykanen, E., Soininen, P. & Niinisto, L. Growth of Titanium-Dioxide Thin-Films by Atomic Layer Epitaxy. Thin Solid Films 225, 288-295 (1993).
30 Yamada, A., Sang, B. S. & Konagai, M. Atomic layer deposition of ZnO transparent conducting oxides. Appl Surf Sci 112, 216-222 (1997).
31 Yousfi, E. B., Fouache, J. & Lincot, D. Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry. Appl Surf Sci 153, 223-234 (2000).
32 Heil, S. B. S. et al. In situ reaction mechanism studies of plasma-assisted atomic layer deposition of Al2O3. Appl Phys Lett 89 (2006).
33 Hoex, B., Heil, S. B. S., Langereis, E., van de Sanden, M. C. M. & Kessels, W. M. M. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett 89 (2006).
34 Lim, J. W. & Yun, S. J. Electrical properties of alumina films by plasma-enhanced atomic layer deposition. Electrochem Solid St 7, F45-F48 (2004).
35 Rossnagel, S. M., Sherman, A. & Turner, F. Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers. J Vac Sci Technol B 18, 2016-2020 (2000).
36 Kim, H., Cabral, C., Lavoie, C. & Rossnagel, S. M. Diffusion barrier properties of transition metal thin films grown by plasma-enhanced atomic-layer deposition. J Vac Sci Technol B 20, 1321-1326 (2002).
37 Grubbs, R. K. & George, S. M. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials. J Vac Sci Technol A 24, 486-496 (2006).
38 Lim, J. W., Park, H. S. & Kang, S. W. Kinetic modeling of film growth rate in atomic layer deposition. J Electrochem Soc 148, C403-C408 (2001).
39 Min, J. S., Son, Y. W., Kang, W. G., Chun, S. S. & Kang, S. W. Atomic layer deposition of TiN films by alternate supply of tetrakis(ethylmethylamino)-titanium and ammonia. Jpn J Appl Phys 1 37, 4999-5004 (1998).
40 Herrmann, C. F., Delrio, F. W., Bright, V. M. & George, S. M. Conformal hydrophobic coatings prepared using atomic layer deposition seed layers and non-chlorinated hydrophobic precursors. J Micromech Microeng 15, 984-992 (2005).
41 Scharf, T. W. et al. Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater 54, 4731-4743 (2006).
42 Elam, J. W., Routkevitch, D., Mardilovich, P. P. & George, S. M. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15, 3507-3517 (2003).
43 Khan, A. I., Yeung, C. W., Hu, C. & Salahuddin, S. in Electron Devices Meeting (IEDM), 2011 IEEE International. 11.13. 11-11.13. 14.
44 Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nature materials 14, 182 (2015).
45 Appleby, D. J. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano letters 14, 3864-3868 (2014).
46 Dasgupta, S. et al. Sub-kT/q switching in strong inversion in PbZr0.52Ti0.48O3 gated negative capacitance FETs. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 1, 43-48 (2015).
47 Gao, W. et al. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano letters 14, 5814-5819 (2014).
48 Li, K. S. et al. Sub-60mV-swing negative-capacitance FinFET without hysteresis. in Electron Devices Meeting (IEDM), 2015 IEEE International. 22.26. 21-22.26. 24.
49 McGuire, F. A. et al. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano letters 17, 4801-4806 (2017).
50 Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nature nanotechnology 13, 24 (2018).
51 Yeung, C. W., Khan, A. I., Cheng, J.-Y., Salahuddin, S. & Hu, C. Non-hysteretic negative capacitance FET with Sub-30mV/dec swing over 106X current range and ION of 0.3 mA/μm without strain enhancement at 0.3V VDD. in Conf. Simul. Semicond. Processes Devices. 257.
52 Rusu, A., Salvatore, G. A., Jiménez, D. & Ionescu, A. M. in Electron Devices Meeting (IEDM), 2010 IEEE International. 16.13. 11-16.13. 14.
53 Majumdar, K., Datta, S. & Rao, S. P. Revisiting the theory of ferroelectric negative capacitance. IEEE Transactions on Electron Devices 63, 2043-2049 (2016).
54 Hoffmann, M. et al. Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Advanced Functional Materials 26, 8643-8649 (2016).
55 Yuan, Z. C. et al. Switching-speed limitations of ferroelectric negative-capacitance FETs. IEEE Transactions on Electron Devices 63, 4046-4052 (2016).
56 Salvatore, G. A., Rusu, A. & Ionescu, A. M. Experimental confirmation of temperature dependent negative capacitance in ferroelectric field effect transistor. Applied Physics Letters 100, 163504 (2012).
57 Lee, M. et al. Prospects for ferroelectric HfZrOx FETs with experimentally CET= 0.98 nm, SSfor= 42mV/dec, SSrev= 28mV/dec, switch-off<0.2V, and hysteresis-free strategies. in Electron Devices Meeting (IEDM), 2015 IEEE International. 22.25. 21-22.25. 24.
58 Gardner, D. S. et al. Review of on-chip inductor structures with magnetic films. IEEE Transactions on Magnetics 45, 4760-4766 (2009).
59 Müller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano letters 12, 4318-4323 (2012).
60 Mueller, S. et al. Incipient ferroelectricity in Al‐doped HfO2 thin films. Advanced Functional Materials 22, 2412-2417 (2012).
61 Hyuk Park, M. et al. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Applied Physics Letters 102, 112914 (2013).
62 Hyuk Park, M. et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Applied Physics Letters 102, 242905 (2013).
63 Schroeder, U. et al. Hafnium oxide based CMOS compatible ferroelectric materials. ECS Transactions 50, 15-20 (2013).
64 Hoffmann, M. et al. Low Temperature Compatible Hafnium Oxide Based Ferroelectrics. Ferroelectrics 480, 16-23 (2015).
65 Morgan, J., Notte, J., Hill, R. & Ward, B. An introduction to the helium ion microscope. Microscopy today 14, 24-31 (2006).
66 Ward, B., Notte, J. A. & Economou, N. Helium ion microscope: A new tool for nanoscale microscopy and metrology. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24, 2871-2874 (2006).
67 Hlawacek, G., Veligura, V., van Gastel, R. & Poelsema, B. Helium ion microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32, 020801 (2014).
68 Yang, J. et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22, 285310 (2011).
69 K. Alexander, C. & N.O. Sadiku, M. Fundamentals of Electric Circuits C.K. Alexander, M.N.O. Sadiku. (2018).
70 Bultel, Y., Géniès, L., Antoine, O., Ozil, P. & Durand, R. Modeling impedance diagrams of active layers in gas diffusion electrodes: diffusion, ohmic drop effects and multistep reactions. Journal of Electroanalytical Chemistry 527, 143-155 (2002).
71 Makharia, R., Mathias, M. F. & Baker, D. R. Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. Journal of The Electrochemical Society 152, A970-A977 (2005).
72 Roy, S. K., Orazem, M. E. & Tribollet, B. Interpretation of low-frequency inductive loops in PEM fuel cells. Journal of The Electrochemical Society 154, B1378-B1388 (2007).
73 Antoine, O., Bultel, Y. & Durand, R. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. Journal of Electroanalytical Chemistry 499, 85-94 (2001).
74 Taibl, S., Fafilek, G. & Fleig, J. Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: inductive loops as a trace of ion motion. Nanoscale 8, 13954-13966 (2016).
75 Kasamatsu, S., Watanabe, S., Hwang, C. S. & Han, S. Emergence of negative capacitance in multidomain ferroelectric–paraelectric nanocapacitors at finite bias. Advanced Materials 28, 335-340 (2016).
76 Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524 (2016).
77 Cheng, S.-Y. et al. Structure analysis of bismuth sodium titanate-based A-site relaxor ferroelectrics by electron diffraction. Journal of the European Ceramic Society 33, 2141-2153 (2013).
78 Bursill, L., JuLin, P., Hua, Q. & Setter, N. Relationship between nanostructure and dielectric response of lead scandium tantalate—(I) structure and domain textures. Physica B: Condensed Matter 205, 305-326 (1995).
79 McClellan, K., Xiao, S.-Q., Lagerlof, K. & Heuer, A. Determination of the structure of the cubic phase in high-ZrO2 Y2O3-ZrO2 alloys by convergent-beam electron diffraction. Philosophical Magazine A 70, 185-200 (1994).
80 Ball, B. L., Smith, R. C., Kim, S.-J. & Seelecke, S. A stress-dependent hysteresis model for ferroelectric materials. Journal of Intelligent Material Systems and Structures 18, 69-88 (2007).
81 Davis, M., Damjanovic, D. & Setter, N. Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Physical Review B 73, 014115 (2006).
82 Pertsev, N., Tagantsev, A. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Physical Review B 61, R825 (2000).
83 Bain, A. K. & Chand, P. Ferroelectrics: Principles and Applications. John Wiley & Sons (2017).
84 Van Dyke, K. The piezo-electric resonator and its equivalent network. Proceedings of the Institute of Radio Engineers 16, 742-764 (1928).
85 Cady, W.-G. The piezo-electric resonator. Proceedings of the Institute of Radio Engineers 10, 83-114 (1922).
86 Khanbareh, H. Expanding the functionality of piezo-particulate composites. University of Bath (2016).
87 Bowen, C., Kim, H., Weaver, P. & Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science 7, 25-44 (2014).
88 Colinge, J.-P. et al. Nanowire transistors without junctions. Nature nanotechnology 5, 225 (2010).
89 Krotnev, I. P. Novel metallic field-effect transistors University of Toronto (2013).
90 Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical review letters 100, 206803 (2008).
91 Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett 12, 758-762 (2012).
92 Kalavade, P. & Saraswat, K. C. A novel sub-10 nm transistor. in Device Research Conference, 2000. Conference Digest. 58th DRC. 71-72.
93 Hisamoto, D. et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices 47, 2320-2325 (2000).
94 Shin, C. Variation-aware advanced CMOS devices and SRAM. Springer (2016).
95 Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329-337 (2011).
96 Look, D. C. Recent advances in ZnO materials and devices. Materials Science and Engineering: B 80, 383-387 (2001).
97 Morkoc, H. et al. Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies. Journal of Applied Physics 76, 1363-1398 (1994).
98 Kastner, M. A. The single-electron transistor. Reviews of Modern Physics 64, 849 (1992).
99 Ichii, M. et al. Computational study of effects of surface roughness and impurity scattering in Si double-gate junctionless transistors. IEEE Transactions on Electron Devices 62, 1255-1261 (2015).
100 Lee, C.-W. et al. Low subthreshold slope in junctionless multigate transistors. Appl Phys Lett 96, 102106 (2010).
101 Su, C.-J. et al. Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Letter 32, 521-523 (2011).
102 Lee, C.-W. et al. Junctionless multigate field-effect transistor. Appl Phys Lett 94, 053511 (2009).
103 Lee, C.-W. et al. Performance estimation of junctionless multigate transistors. Solid-State Electronics 54, 97-103 (2010).
104 Lee, C. et al. Short-channel junctionless nanowire transistors. in Proc. SSDM. 1044-1045.
105 Colinge, J.-P. Junctionless transistors. in 2012 IEEE International Meeting for Future of Electron Devices, Kansai (2012).
106 Migita, S., Morita, Y., Masahara, M. & Ota, H. Fabrication and demonstration of 3-nm-channel-length junctionless field-effect transistors on silicon-on-insulator substrates using anisotropic wet etching and lateral diffusion of dopants. Jpn J Appl Phys 52, 04CA01 (2013).
107 Kranti, A. et al. Junctionless 6T SRAM cell. in Proc. ESSDERC. 357-360 (2010).
108 Gnudi, A., Reggiani, S., Gnani, E. & Baccarani, G. Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electr Device L 33, 336-338 (2012).
109 Lee, C.-W. et al. High-temperature performance of silicon junctionless MOSFETs. IEEE Transactions on Electron Devices 57, 620-625 (2010).
110 Ansari, L., Fagas, G., Colinge, J.-P. & Greer, J. C. A proposed confinement modulated gap nanowire transistor based on a metal (tin). Nano Lett 12, 2222-2227 (2012).
111 Cho, S., Butch, N. P., Paglione, J. & Fuhrer, M. S. Insulating behavior in ultrathin bismuth selenide field effect transistors. Nano Lett 11, 1925-1927 (2011).
112 Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Physical Review Letters 99, 216802 (2007).
113 Mackenzie, D. M. A. Bismuth and Germanium Nanoscale Cluster Devices. (2010).
114 Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature nanotechnology 3, 654-659 (2008).
115 Shim, W. et al. On-film formation of Bi nanowires with extraordinary electron mobility. Nano Lett 9, 18-22 (2008).
116 Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950 (2012).
117 Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540-544 (1998).
118 McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Physical Review Letters 96, 086805 (2006).
119 Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the' parity anomaly'. Physical Review Letters 61, 2015 (1988).
120 Xia, F. N., Farmer, D. B., Lin, Y. M. & Avouris, P. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett 10, 715-718 (2010).
121 Graciani, J., Hamad, S. & Sanz, J. F. Changing the physical and chemical properties of titanium oxynitrides TiN1− xOx by changing the composition. Physical Review B 80, 184112 (2009).
122 Leskelä, M. & Ritala, M. Atomic layer deposition chemistry: recent developments and future challenges. Angewandte Chemie International Edition 42, 5548-5554 (2003).
123 Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Physics today 51, 22-27 (1998).
124 von Seefeld, H., Cheung, N. W., Maenpaa, M. & Nicolet, M.-A. Investigation of titanium—nitride layers for solar-cell contacts. IEEE Transactions on Electron Devices 27, 873-876 (1980).
125 Sinke, W., Frijlink, G. & Saris, F. Oxygen in titanium nitride diffusion barriers. Appl Phys Lett 47, 471-473 (1985).
126 Trenczek-Zajac, A. et al. Structural and electrical properties of magnetron sputtered Ti (ON) thin films: the case of TiN doped in situ with oxygen. Journal of Power Sources 194, 93-103 (2009).
127 Niyomsoan, S., Grant, W., Olson, D. & Mishra, B. Variation of color in titanium and zirconium nitride decorative thin films. Thin Solid Films 415, 187-194 (2002).
128 Guemmaz, M., Moraitis, G., Mosser, A., Khan, M. & Parlebas, J. Band structure of substoichiometric titanium nitrides and carbonitrides: spectroscopical and theoretical investigations. Journal of Physics: Condensed Matter 9, 8453 (1997).
129 Chang, J. B. et al. Improved superconducting qubit coherence using titanium nitride. Appl Phys Lett 103, 012602 (2013).
130 Gwo, S. et al. Local electric-field-induced oxidation of titanium nitride films. Appl Phys Lett 74, 1090-1092 (1999).
131 Halperin, W. Quantum size effects in metal particles. Reviews of Modern Physics 58, 533 (1986).
132 Patsalas, P., Gravalidis, C. & Logothetidis, S. Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films. Journal of applied physics 96, 6234-6246 (2004).
133 Mainet, L. C. H. et al. TiN nanoparticles: small size-selected fabrication and their quantum size effect. Nanoscale research letters 7, 1 (2012).
134 Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Optical Materials Express 2, 478-489 (2012).
135 Van Bui, H., Kovalgin, A. Y., Schmitz, J. & Wolters, R. A. Conduction and electric field effect in ultra-thin TiN films. Appl Phys Lett 103, 051904 (2013).
136 Jeyachandran, Y., Narayandass, S. K., Mangalaraj, D., Areva, S. & Mielczarski, J. Properties of titanium nitride films prepared by direct current magnetron sputtering. Materials Science and Engineering: A 445, 223-236 (2007).
137 Adachi, S. & Takahashi, M. Optical properties of TiN films deposited by direct current reactive sputtering. Journal of Applied Physics 87, 1264-1269 (2000).
138 Li, Q. H., Zhu, D., Liu, W., Liu, Y. & Ma, X. C. Optical properties of Al-doped ZnO thin films by ellipsometry. Applied surface science 254, 2922-2926 (2008).
139 Isić, G. et al. Spectroscopic ellipsometry of few-layer graphene. Journal of Nanophotonics 5, 051809-051809-051807 (2011).
140 Bhat, R. R. & Genzer, J. Using spectroscopic ellipsometry for quick prediction of number density of nanoparticles bound to non-transparent solid surfaces. Surface science 596, 187-196 (2005).
141 Lim, B. S., Rahtu, A. & Gordon, R. G. Atomic layer deposition of transition metals. Nature materials 2, 749 (2003).
142 Lim, J.-W., Park, H.-S. & Kang, S.-W. Kinetic modeling of film growth rate in atomic layer deposition. Journal of The Electrochemical Society 148, C403-C408 (2001).
143 Puurunen, R. L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of applied physics 97, 121301 (2005).
144 Kanarik, K. J. et al. Overview of atomic layer etching in the semiconductor industry. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 33, 020802 (2015).
145 Kuhn, K. J. et al. Process technology variation. IEEE Transactions on Electron Devices 58, 2197-2208 (2011).
146 DuMont, J. W., Marquardt, A. E., Cano, A. M. & George, S. M. Thermal Atomic Layer Etching of SiO2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride. ACS applied materials & interfaces 9, 10296-10307 (2017).
147 Agarwal, A. & Kushner, M. J. Plasma atomic layer etching using conventional plasma equipment. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 27, 37-50 (2009).
148 Metzler, D., Bruce, R. L., Engelmann, S., Joseph, E. A. & Oehrlein, G. S. Fluorocarbon assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 32, 020603 (2014).
149 Athavale, S. D. & Economou, D. J. Molecular dynamics simulation of atomic layer etching of silicon. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13, 966-971 (1995).
150 Ludviksson, A., Xu, M. & Martin, R. M. Atomic layer etching chemistry of Cl2 on GaAs (100). Surface science 277, 282-300 (1992).
151 Oehrlein, G., Metzler, D. & Li, C. Atomic layer etching at the tipping point: an overview. ECS Journal of Solid State Science and Technology 4, N5041-N5053 (2015).
152 Carver, C. T. et al. Atomic layer etching: An industry perspective. ECS Journal of Solid State Science and Technology 4, N5005-N5009 (2015).
153 Kanarik, K. J., Tan, S. & Gottscho, R. A. Atomic Layer Etching: Rethinking the Art of Etch. The journal of physical chemistry letters 9, 4814-4821 (2018).
154 Ivanov, T. et al. The influence of post-etch InGaAs fin profile on electrical performance. Japanese Journal of Applied Physics 53, 04EC20 (2014).
155 Eriguchi, K. & Ono, K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices. Journal of Physics D: Applied Physics 41, 024002 (2008).
156 George, S. M. Atomic layer deposition: an overview. Chemical reviews 110, 111-131 (2009).
157 Ritala, M. & Leskelä, M. Handbook of Thin Films Elsevier (2002).
158 Puurunen, R. L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of applied physics 97, 9 (2005).
159 Leskelä, M. & Ritala, M. Atomic layer deposition (ALD): from precursors to thin film structures. Thin solid films 409, 138-146 (2002).
160 Groner, M., Fabreguette, F., Elam, J. & George, S. Low-temperature Al2O3 atomic layer deposition. Chemistry of Materials 16, 639-645 (2004).
161 Knez, M., Nielsch, K. & Niinistö, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials 19, 3425-3438 (2007).
162 Choi, B. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of applied physics 98, 033715 (2005).
163 George, S. M. & Lee, Y. Prospects for thermal atomic layer etching using sequential, self-limiting fluorination and ligand-exchange reactions. ACS nano 10, 4889-4894 (2016).
164 Matsuura, T., Murota, J., Sawada, Y. & Ohmi, T. Self‐limited layer‐by‐layer etching of Si by alternated chlorine adsorption and Ar+ ion irradiation. Applied physics letters 63, 2803-2805 (1993).
165 Park, S., Lee, D. & Yeom, G. Atomic layer etching of Si (100) and Si (111) using Cl2 and Ar neutral beam. Electrochemical and Solid-State Letters 8, C106-C109 (2005).
166 Samukawa, S. Ultimate top-down etching processes for future nanoscale devices: Advanced neutral-beam etching. Japanese journal of applied physics 45, 2395 (2006).
167 Barone, M. & Graves, D. Molecular‐dynamics simulations of direct reactive ion etching of silicon by fluorine and chlorine. Journal of applied physics 78, 6604-6615 (1995).
168 Hagstrum, H. D. Theory of Auger ejection of electrons from metals by ions. Physical Review 96, 336 (1954).
169 Perry, A. & Boswell, R. Fast anisotropic etching of silicon in an inductively coupled plasma reactor. Applied Physics Letters 55, 148-150 (1989).
170 Lee, Y. H. Surface damage threshold of Si and SiO2 in electron‐cyclotron‐resonance plasmas. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, 1318-1324 (1992).
171 Khan, F., Zhou, L., Kumar, V. & Adesida, I. Plasma-induced damage study for n-GaN using inductively coupled plasma reactive ion etching. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 19, 2926-2929 (2001).
172 Iniewski, K. Nano-Semiconductors: Devices and Technology. CRC Press (2011).
173 Wang, Y., Li, X., Li, T., Yang, H. & Jiao, J. Vertical profiles and CD loss control in deep RIE technology MEMS fabrication applications. in Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on. 1839-1841.
174 Gupta, P., Coon, P., Koehler, B. & George, S. Desorption product yields following Cl2 adsorption on Si (111) 7× 7: Coverage and temperature dependence. Surface science 249, 92-104 (1991).
175 Imai, S., Haga, T., Matsuzaki, O., Hattori, T. & Matsumura, M. Atomic layer etching of silicon by thermal desorption method. Japanese journal of applied physics 34, 5049 (1995).
176 Lee, Y. & George, S. M. Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride. ACS nano 9, 2061-2070 (2015).
177 Lee, Y., DuMont, J. W. & George, S. M. Atomic layer etching of HfO2 using sequential, self-limiting thermal reactions with Sn(acac)2 and HF. ECS Journal of Solid State Science and Technology 4, N5013-N5022 (2015).
178 Hubbard, K. & Schlom, D. Thermodynamic stability of binary oxides in contact with silicon. Journal of Materials Research 11, 2757-2776 (1996).
179 Gutowski, M. et al. Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Applied Physics Letters 80, 1897-1899 (2002).
180 T. M. Klein. Et al. Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100). Applied Physics Letters 75.25 (1999).
181 Naumann, V., Otto, M., Wehrspohn, R., Werner, M. & Hagendorf, C. Interface and material characterization of thin ALD-Al2O3 layers on crystalline silicon. Energy Procedia 27, 312-318 (2012).
182 Puurunen, R. L. & Vandervorst, W. Island growth as a growth mode in atomic layer deposition: A phenomenological model. Journal of Applied Physics 96, 7686-7695 (2004).
183 Guha, S. et al. High temperature stability of Al2O3 dielectrics on Si: Interfacial metal diffusion and mobility degradation. Applied Physics Letters 81, 2956-2958 (2002).
184 Niinistö, L. et al. Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high‐k dielectrics and other oxide materials. physica status solidi (a) 201, 1443-1452 (2004).
185 Matero, R., Rahtu, A., Ritala, M., Leskelä, M. & Sajavaara, T. Effect of water dose on the atomic layer deposition rate of oxide thin films. Thin Solid Films 368, 1-7 (2000).
186 Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Physical review letters 56, 930 (1986).
187 Jalili, N. & Laxminarayana, K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14, 907-945 (2004).
188 Giessibl, F. J. Advances in atomic force microscopy. Reviews of modern physics 75, 949 (2003).
189 Zhao, Y. et al. Multi-silicon ridge nanofabrication by repeated edge lithography. Nanotechnology 20, 315305 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71829-
dc.description.abstractIn the sub-10nm semiconductor technology nodes, the major issue is the power consumption. Due to the challenge of extreme process conditions for the nanofabrication, the variability and stability issues for continuous transistor scaling have become a hot topic. In order to keep high performance and low power consumption, novel device schemes have been proposed, including nanowire channel stacks, the vertical transistors, negative capacitance, 2D materials, and metallic channels. All of these schemes always face the “scaling-down” problem. Atomic layer deposition (ALD) is a very promising technique for precise nanofabrication because of the layer-by-layer deposition and self-limiting mechanisms. This thesis, we mainly focus on the applications of ALD on negative capacitance transistors and TiN metallic channel to deal with the power consumption issue. In addition, with the evolution of the precise nanofabrication in sub-10nm semiconductor technology nodes etching technology is also becoming critical. In this thesis, a novel atomic layer etching (ALE) technique is proposed and developed.
In the first part of this thesis, we report the experimental observations and the theoretical investigation of the inductance caused by the ferroelectric polarization switching. The time-domain non-RC response and underdamping RLC oscillation in a metal-ferroelectric-metal (MFM) structure are observed for the first time, indicating the existence of inductance in the ferroelectric layer. The ferroelectric inductance is also confirmed by the positive imaginary part in the Nyquist impedance plot. Upon careful examination of Maxwell's equations, we show that the polarization switching yields an “effective ferroelectric-induced electromotive force (emf)” which results in a decrease of the voltage drop across the ferroelectric layer. The polarity of this effective ferroelectric-induced emf opposites the polarization switching, which is similar in behavior to the Lenz’s law and so indicates that the induced emf voltage acts against the applied voltage. Therefore, the effective ferroelectric-induced emf gives rise to the inductance and negative capacitance during the polarization switching. In addition, the negative capacitance is clearly manifested by the enhancement of small-signal capacitance of a paraelectric capacitor as connected in series with a ferroelectric capacitor. This small-signal capacitance enhancement is attributed to the effect of negative capacitance induced by the net ferroelectric polarization switching. The observation of negative capacitance and inductance under small-signal modulation can be accounted for by ferroelectric multi-domains in the nanoscale ferroelectric layer, which is clearly revealed by the nano-beam electron diffraction. Finally, this ferroelectric layer is introduced into the gate stack of the nanoscale junctionless transistors to examine the large-signal operation of negative capacitance. The negative-capacitance ultrathin-body Si junctionless transistor with a subthreshold swing below 60 mV/dec operated under a large drain voltage, along with the almost hysteresis-free operation, is first demonstrated.
In the second part of this thesis, room-temperature field effect and modulation of the channel resistance was achieved in the metallic channel transistors, in which the oxygen-doped TiN ultrathin-body channels were prepared by the atomic layer delta doping and deposition (AL3D) technique with precise control of the channel thickness and electron concentration. The decrease of channel thickness leads to the reduction in electron concentration and the blue shift of the absorption spectrum, which can be explained by the onset of quantum confinement effect. The increase of oxygen incorporation results in the increase of interband gap energy, also giving rise to the decrease in electron concentration and the blue shift of the absorption spectrum. Because of the significant decrease in electron concentration, the screening effect was greatly suppressed in the metallic channel. Therefore, the channel modulation by the gate electric field was achieved at room temperature due to the quantum confinement and suppressed screening effect with the thickness down to 4.8 nm and the oxygen content up to 35% in the oxygen-doped TiN ultrathin-body channel.
Finally, the layer-by-layer ALE was achieved by using the combination of the ALD and HF-based wet chemical etching. The deposition of ALD oxide leads to the formation of the interfacial layer between the oxide and Si. Afterward, the HF-based solution removes the oxide and IL on the Si layer, resulting in the layer-by-layer, isotropic, self-limiting, self-stop, and damage-free ALE technique. The etching rate can be controlled accurately with a precision of Å scale per ALE cycle and a high linearity between the etching depth and the applied ALE cycles.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:11:17Z (GMT). No. of bitstreams: 1
ntu-107-F03527047-1.pdf: 10209939 bytes, checksum: 8660f8b397fd6c99aced473ad349e4fa (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口委審定書 i
誌謝 ii
摘要 iv
Abstract vi
Contents ix
List of Figures xiii
List of Tables xix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline of this thesis 2
Chapter 2 Background 5
2.1 Negative capacitance transistors 5
2.1.1 Introduction 5
2.1.2 Negative capacitance 10
2.1.3 Ferroelectric materials with negative capacitance behaviors 13
2.1.4 Transient response of a ferroelectric capacitor 17
2.2 Metallic channel transistor 18
2.2.1 Introduction 18
2.2.2 Materials and methods of metallic channel 19
2.3 Atomic Layer Deposition 21
2.4 Introduction 21
2.4.2 ALD Window 29
2.4.3 Other Features 31
Chapter 3 Negative capacitance from the inductance of ferroelectric switching 33
3.1 Introduction 33
3.2 Materials and methods 34
3.2.1 The metal-ferroelectric-metal (MFM) structure for the measurements of the polarization-electric field (P-E) hysteresis loop, the time-domain voltage and current responses, and the Nyquist impedance plot 34
3.2.2 Series connection of a paraelectric HfO2 capacitor with a ZrO2 capacitor for the enhancement of small-signal capacitance 35
3.2.3 Fabrication of negative-capacitance Si junctionless transistors 36
3.2.4 Materials characterization 38
3.2.5 Electrical characterization 38
3.3 As-deposited ferroelectric ZrO2 with negative capacitance. 39
3.4 Ferroelectric inductance with large-signal switching operation. 44
3.5 Negative capacitance and ferroelectric inductance. 49
3.6 Negative capacitance observed with small-signal switching operation 49
3.7 Discussions 51
3.8 Conclusion 55
Chapter 4 Ferroelectric inductance theoretical model 57
4.1 Ampere–Maxwell and Faraday’s laws for the decrease in the voltage drop across the ferroelectric layer due to the polarization switching 57
4.2 Gauss’ law for the decrease in the voltage drop across the ferroelectric layer due to the polarization switching 61
4.3 The equivalent RLC circuit for the ferroelectric capacitor and the estimation of the induction of the as-deposited ZrO2 MFM structure 67
4.4 Small signal model of Ferroelectric inductance 71
4.4.1 A.C. model based on the D.C. model theory and derivation 71
4.4.2 The phasor model of the ferroelectric inductance 75
4.5 Evaluation of the negative capacitance of the as-deposited ZrO2 MFM structure according to the enhancement of the small-signal capacitance 83
4.6 Piezoelectric model 84
Chapter 5 Room-temperature field effect transistors with metallic ultrathin TiN-based channel prepared by atomic layer delta doping and deposition capacitance enhancement 86
5.1 Introduction 86
5.2 Materials and methods 90
5.3 Results and Discussion 93
5.4 Conclusion 101
Chapter 6 Low-temperature isotropic atomic layer etching of Si with a damage-free surface 102
6.1 Introduction 102
6.2 Materials and methods 104
6.3 Results and discussion 106
6.4 Conclusion 111
Chapter 7 Summary 112
7.1 Summary 112
Reference….… 114
dc.language.isozh-TW
dc.subject原子層沉積zh_TW
dc.subject鐵電zh_TW
dc.subject金屬通道zh_TW
dc.subject原子層蝕刻zh_TW
dc.subject氮化鈦zh_TW
dc.subjectatomic layer depositionen
dc.subjectatomic layer etchingen
dc.subjectmetallic channelen
dc.subjectTiNen
dc.subjectferroelectricen
dc.title先進奈米電晶體中鐵負容和通道工程的原子層技術之研究zh_TW
dc.titleAtomic layer technologies for ferroelectric negative capacitance and channel engineering in advanced nanoscale transistorsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee李嗣涔,謝宗霖,潘正聖,李資良,張智勝
dc.subject.keyword原子層沉積,原子層蝕刻,金屬通道,氮化鈦,鐵電,zh_TW
dc.subject.keywordatomic layer deposition,atomic layer etching,metallic channel,TiN,ferroelectric,en
dc.relation.page127
dc.identifier.doi10.6342/NTU201804251
dc.rights.note有償授權
dc.date.accepted2018-10-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved