Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃光裕
dc.contributor.authorWei-Min Wangen
dc.contributor.author王偉珉zh_TW
dc.date.accessioned2021-06-17T06:07:57Z-
dc.date.available2021-01-15
dc.date.copyright2019-01-15
dc.date.issued2018
dc.date.submitted2018-12-27
dc.identifier.citationReferences
[1] R. Wiesendanger, “Scanning Probe Microscopy and Spectroscopy: Methods and Applications”, Cambridge: Cambridge University Press, 1994.
[2] S. Gonda, T. Kurosawa, and Y. Tanimura, “Mechanical Performances of Asymmetrical, Monolithic Three-dimensional Fine-motion Stage for Nanometrology”, Measurement Science and Technology, Vol. 10, No.10, 1999, pp. 986-993.
[3] T. Ando, N. Kodera, T. Uchihashi, A. Miyagi, R. Nakakita, H. Yamashita, and K. Matada, “High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work”, e-Journal of Surface Science and Nanotechnology, Vol. 3, 2005, pp. 384-392.
[4] B. A. Wacaser, M. J. Maughan, I. A. Mowat, T. L. Niederhauser, M. R. Linford, and R. C. Davis, “Chemomechanical Surface Patterning and Functionalization of Silicon Surfaces Using an Atomic Force Microscope”, Applied Physics Letters, Vol. 82, No.5, 2003, pp. 808-810.
[5] K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike and T. Goto, “Quantitative Material Characterization by Ultrasonic AFM”, Surface and Interface Analysis, Vol. 27, No. 5-6, 1999, pp. 600-606.
[6] S. M. Salapaka and M. V. Salapaka, “Scanning Probe Microscopy”, IEEE Control Systems Magazine, Vol. 28, No. 2, 2008, pp. 65-83.
[7] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Physical Review Letters, Vol. 56, No. 9, 1986, pp. 930-933.
[8] E.-T. Hwu, K.-Y. Huang, S.-K. Hung, and I.-S. Hwang, “Measurement of Cantilever Displacement Using a Compact Disk/Digital Versatile Disk Pickup Head”, Japanese Journal of Applied Physics, Vol. 45, No. 3B, 2006, pp. 2368-2371.
[9] E.-T. Hwu, S.-K. Hung, C.-W. Yang, I.-S. Hwang, and K.-Y. Huang, “Simultaneous Detection of Translational and Angular Displacements of Micromachined Elements”, Applied Physics Letters, Vol. 91, No. 22, 2007, pp. 221908 (1-3).
[10] E.-T. Hwu, S.-K. Hung, C.-W. Yang, K.-Y. Huang, and I.-S. Hwang, “Real-time Detection of Linear and Angular Displacements with A Modified DVD Optical Head”, Nanotechnology, Vol. 19, No. 11, 2008, Pp. 115501 (1-7).
[11] P. Girard, “Electrostatic Force Microscopy: Principles and Some Applications to Semiconductors”, Nanotechnology, Vol.12, No. 4, 2001, pp. 485-490.
[12] D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi, “Magnetic Force Microscopy: General Principles and Application to Longitudinal Recording Media”, Journal of Applied Physics, Vol. 68, No. 3, 1998, pp. 1169-1183.
[13] G.-Y. Liu, S. Xu, and Y. Qian, “Nanofabrication of Self-assembled Monolayers Using Scanning Probe Lithography”, American Chemical Society, Vol. 33, No. 7, 2000, pp. 457-466.
[14] N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic Tunnel Junction Device with Perpendicular Magnetization Films for High-density Magnetic Random Access Memory”, Journal of Applied Physics, Vol. 91, No. 8, 2002, pp. 5246-5249.
[15] T. Gotszalk, P. Grabiec, and I. Rangelow, “Application of Electrostatic Force Microscopy in Nanosystem Diagnostics”, Materials Science, Vol. 21, No. 3, 2003, pp. 334-339.
[16] K. Kočevar and I. Muševič, “Observation of An Electrostatic Force between Charged Surfaces in Liquid Crystals”, Physical Review E, Vol. 65, No. 3, 2002, pp. 030703 (1-4).
[17] Ampere A. Tseng, A. Notargiacomo, and T.-P. Chen, “Nanofabrication by Scanning Probe Microscope Lithography: A Review”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 23, No. 3, 2005, pp. 877-894.
[18] H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, and D. Rugar, “High-density Data Storage Using Proximal Probe Techniques”, IBM Journal of Research and Development, Vol. 39, No. 6, 1995, pp. 681-699.
[19] G. Binnig and D. P. E. Smith, “Single-tube Three-dimensional Scanner for Scanning Tunneling Microscopy”, Review of Scientific Instruments, Vol. 57, No. 8, 1986, pp. 1688-1689.
[20] T. Fujii, M. Suzuki, M. Yamaguchi, R. Kawaguchi, H. Yamada, and K. Nakayama, “Three-dimensional Displacement Measurement of A Tube Scanner for A Scanning Tunneling Microscope by Optical Interferometer”, Nanotechnology, Vol. 6, No. 4, 1995, pp.121-126.
[21] Y.-K. Yong, B. Ahmed, and S. O. R. Moheimani, “Atomic Force Microscopy with A 12-electrode Piezoelectric Tube Scanner”, Review of Scientific Instruments, Vol. 81, No. 3, 2010, pp. 033701 (1-10).
[22] M. Goldfarb and N. Celanovic, “Modeling Piezoelectric Stack Actuators for Control of Micromanipulation”, IEEE Control Systems, Vol. 17, No. 3, 1997, pp.69-79.
[23] H. Yamada, T. Fujii, and K. Nakayama, “Linewidth Measurement by A New Scanning Tunneling Microscope”, Japanese Journal of Applied Physics, Vol. 28, No. 11, 1989, pp. 2402-2404.
[24] D.-Y. Lee, D.-M. Kim, and D.-G. Gweon, “Design and Evaluation of Two Dimensional Metrological Atomic Force Microscope Using A Planar Nanoscanner”, Japanese Journal of Applied Physics, Vol. 45, No. 3B, 2006, pp. 2124-2127.
[25] P. Ge and M. Jouaneh, “Tracking Control of A Piezoceramic Actuator”, IEEE Transactions on Control Systems Technology, Vol. 4, No. 3, 1996, pp. 209-216.
[26] S. Yun, Y.-B. Ham, C.-Y. Kim, and J.-H. Park, “Hysteresis Nonlinearity Compensator for Piezoelectric Actuator”, Journal of Electroceramics, Vol. 17, No. 2-4, 2006, pp. 573-576.
[27] D. Croft, G. Shedd, and S. Devasia, “Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application”, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), Vol. 3, 2000, pp. 2123-2128.
[28] T. Fett and G. Thun, “Determination of Room-temperature Tensile Creep of PZT”, Journal of Materials Science Letters, Vol. 17, No. 22, 1998, pp. 1929-1931.
[29] M. S. Rana, H. R. Pota, I. R. Petersen, “Performance of Sinusoidal Scanning with MPC in AFM Imaging”, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 1, 2015, pp. 73-83.
[30] I. A. Mahmood, and S. O. R. Moheimani, “Making A Commercial Atomic Force Microscope More Accurate and Faster Using Positive Position Feedback Control”, Review of Scientific Instruments, Vol. 80, No. 6, 2009, pp. 063705 (1-8).
[31] C.-L. Chen, J.-W. Wu, Y.-T. Lin, Y.-T. Lo, L.-C. Fu, “Sinusoidal Trajectory for Atomic Force Microscopy Precision Local Scanning with Auxiliary Optical Microscopy”, 52nd IEEE Conference on Decision and Control, 2013, pp. 348-353.
[32] B.-H. Yin, D.-X. Chen, Y.-S. Lin, M.-Z. Chu, Li Han, “A Novel Atomic Force Microscope Control System Based on PC104 and DSP Embedded System”, Physics Procedia, Vol. 33, 2012, pp. 1497-1501.
[33] I. A. Mahmood and S. O. R. Moheimani, “Fast Spiral-scan Atomic Force Microscopy”, Nanotechnology, Vol. 20, No. 36, 2009, pp. 365503 (1-4).
[34] Y. K. Yong, S. O. R. Moheimani, B. J. Kenton, and K. K. Leang, “Invited Review Article: High-speed Flexure-guided Nanopositioning: Mechanical Design and Control Issues”, Review of Scientific Instruments, Vol. 83, No. 12, 2012, pp. 121101 (1-22).
[35] T. Ando, T. Uchihashi, T. Fukuma, “High-speed Atomic Force Microscopy for Nano-visualization of Dynamic Biomolecular Processes”, Progress in Surface Science, Vol. 83, No. 7-9, 2008, pp. 337-437.
[36] J. Tamayo and R. García, “Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy”, Langmuir, Vol. 12, No. 18, 1996, pp. 4430-4435.
[37] G. Bar, Y. Thomann, R. Brandsch, and H.-J. Cantow, “Factors Affecting the Height and Phase Images in Tapping Mode Atomic Force Microscopy. Study of Phase-Separated Polymer Blends of Poly (ethene-co-styrene) and Poly (2, 6-dimethyl-1, 4-phenylene oxide)”, Langmuir, Vol. 13, No. 14, 1997, pp. 3807-3812.
[38] T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, “Frequency Modulation Detection Using High-Q Cantilevers for Enhanced Force Microscope Sensitivity”, Journal of Applied Physics, Vol. 69, No. 2, 1991, pp. 668-673.
[39] T. Fukuma, J. I. Kilpatrick, and S. P. Jarvis, “Phase Modulation Atomic Force Microscope with True Atomic Resolution”, Review of Scientific Instruments, Vol. 77, No. 12, 2006, pp. 123703 (1-5).
[40] I. V. Yaminsky and A. M. Tishin, “Magnetic Force Microscopy”, Russian Chemical Reviews, Vol. 68, No. 3, 1999, pp. 165-170.
[41] J. D. Alexander, M. Tortonese, and T. Nguyen, “Atomic Force Microscope with Intergrated Optics for Attachment to Optical Microscope”, United States Patent, No. 5952657, (Sep. 14, 1999)
[42] W. P. Mason, “Piezoelectricity, Its History and Applications”, The Journal of The Acoustical Society of America, Vol. 70, No. 6, 1981, pp. 1561-1566.
[43] J. W. Waander, “Piezoelectric Ceramics Properties and Applications”, Philips Components, 1991, Chapter 2.
[44] Y.-X. Yao, L.-L. Ren, S.-T. Gao, and S. Li, “Histogram Method for Reliable Thickness Measurements of Graphene Films Using Atomic Force Microscopy (AFM)”, Journal of Materials Science & Technology, Vol. 33, No. 8, 2017, pp. 815-820.
[45] J. H. Harlow, “Electric Power Transformer Engineering”, Chemical Rubber Company Press, 2004
[46] M. H. Tooley, “Electronic Circuits: Fundamentals and Applications”, Elsevier, 2006
[47] N. Kodera, H. Yamashita, and T. Ando, “Active Damping of The Scanner for High-speed Atomic Force Microscopy”, Review of Scientific Instruments, Vol. 76, No. 5, 2005, pp. 053708 (1-5).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71731-
dc.description.abstract掃描探針顯微術已是探討微奈米科學的重要利器之一。然而,儀器本身的不普及性與高居不下的持有成本導致許多欲運用此技術進行研究的人員望而卻步。因此,除了持續增進掃描探針顯微術的功能與能力外,如何讓其進一步普及化也已成為一道重要議題。若以掃描探針顯微術本身功能來歸類,可概略地將其分為偵測模組與掃描致動模組。偵測模組對被測物運動的量測解析度、訊號頻寬與其本身的雷射光點尺寸等,將大幅地影響其系統性能與應用範圍。無論如何,性能優異的偵測模組仍然需要一個精準穩定的掃描致動模組進行整合。此時,偵測模組將乘載被測物進行各種模式的運動,一套完整的掃描探針顯微儀器則得以實現。
本論文使用壓電陶瓷蜂鳴片做為致動核心,設計開發出一款使用磁石堆疊產生行程可調的旗桿式結構蜂鳴片掃描器來取代傳統的掃描模組。此掃描器驅動核心使用金屬薄片當做基底,可以提供更高的結構韌性與可靠度。透過理論計算分析,可精準地得知設計時須注意的元件尺寸與掃描行程間的關係。此掃描器具備極高的行程控制電壓比率、高設計彈性與相對強韌的結構。其運動特性也透過實驗驗證,於線性度、磁滯現象、XY軸運動正交性與動態特性皆可與傳統掃描致動技術媲美。最後整合可與傳統偵測模組匹敵的像散式偵測模組進行掃圖,實際解析單層石墨台階以此驗證本蜂鳴片掃描器亦具備次奈米級的空間解析度。
zh_TW
dc.description.abstractScanning probe microscopy (SPM) is one of the crucial techniques for studying micro/nano science. However, the non-popularity of them and the high cost inducing many people to quit even though they want to use this technology for their studies. Therefore, in addition to keeping improving the functions and the capabilities of SPM, how to enhance its popularity has also become an important issue. If classified by the internal functions of SPM, it can be generally divided into 'detection module' and 'scan-actuation module'. The system performances and application fields are dramatically influenced by the measurement resolution, signal bandwidth, and laser spot size...etc. of the detection module to the motion of the targets. No matter what, a high performance detection module still needs to be integrated with a precise and stable scan-actuation module. At the moment, the specimen is carried by the scan-actuation module to achieve various motion and able to realize a complete SPM instrument.
A range-adjustable, which is realized by magnet-stacking, flagpole buzzer scanner is designed and developed to replace the traditional scanning module in this dissertation. The actuation core is constructed on the metal diaphragm, which provides higher structure toughness and reliability. According to the theoretical analysis, the relation between the size of elements and the scan ranges can be precisely acquired. This scanner provides high design flexibility, relative tough structure and can be driven in low-voltage. Its motion properties are also verified by experiments. Its linearity, hysteresis, orthogonality of XY-axis, and dynamic property are comparable with the traditional techniques. Finally, the sub-nano spacial resolution of this buzzer scanner is verified by resolving the single atomic steps on graphite by integrating with the astigmatic detection module.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:07:57Z (GMT). No. of bitstreams: 1
ntu-107-D00522018-1.pdf: 11771590 bytes, checksum: 403374e49d9e4e087473663e6ffc027c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
Preface................................................................................................................................i
摘要....................................................................................................................ii
Abstract............................................................................................................................iii
Contents............................................................................................................................v
List of Figures................................................................................................................viii
List of Tables.................................................................................................................xiv
List of Symbols................................................................................................................xv
Chapter 1. Introduction...............................................................................................1
1.1 Overview of Scanning Probe Microscopy..........................................................1
1.1.1 STM and AFM.............................................................................................1
1.1.2 Astigmatic AFM.......................................................... ................................3
1.1.3 Various types of SPM...................................................................................5
1.2 Scanners Used in Scanning Probe Microscopy...................................................7
1.2.1 Overview of scanner types.......................................... ................................7
1.2.1.1 Piezoelectric tube scanner...................................................................8
1.2.1.2 Piezoelectric stack with flexural structure........................................10
1.2.2 Types of scanning motion control.............................................................12
1.2.2.1 Triangular scanning.................................................................... ......13
1.2.2.2 Sinusoidal scanning....................................... ..............................14
1.2.2.3 Spiral scanning.......................................... ....................................15
1.2.3 Measuring modes..................................................................................16
1.2.3.1 Contact mode................................................. ..............................16
1.2.3.2 Dynamic mode................................................................................18
1.2.3.3 Lift mode........................................................ .............................20
1.3 Motivation and Objective of Dissertation....................................................22
1.4 Organization of Dissertation.......................................... .............................23
Chapter 2. Piezoelectric Buzzer Scanner for SPM.............................................24
2.1 Construction and Characteristics of Piezoelectric Buzzer.........................24
2.2 Design and Development of Buzzer Scanner.............................................32
2.2.1 Conceptual configurations...................................... .............................32
2.2.2 Ideas for scan-range adjustable mechanism........................................3 7
2.2.3 Driving configurations ............................................ .............................39
2.3 Dimensional and Actuation Analysis of Flagpole buzzer Scanner.................42
Chapter 3. Scan-range Adjustable AFM Based on Buzzer Scanner..................48
3.1 System Configuration and Implementation.................................................48
3.1.1 AFM-probe approaching mechanism s and their performances ..........52
3.1.2 Fast position-setting coplanar stage for detecting location.......................61
3.2 Control System and Software Configurations...............................................66
Chapter 4. Performance Verification of Flagpole Buzzer Scanner........................68
4.1 Actuation Comparison and Scanning Characteristics of Buzzer Scanner.......69
4.2 Orthogonality Verification of Scanning Motion.............................................75
4.3 Dynamic Response and Corresponding Influences ......................................77
4.4 Consolidating Performance with Scanning and Detecting Motions..............85
4.5 AFM Detecting Resolution................................................ .............................87
Chapter 5. Conclusions..............................................................................................91
Reference.........................................................................................................................93
Appendix........................................................................................................................99
Publication list...............................................................................................................108
dc.language.isoen
dc.title適用於掃描探針顯微術之掃描範圍可調蜂鳴片壓電致動裝置之研發zh_TW
dc.titleDevelopment of A Scan-Range Adjustable Buzzer Scanner for Scanning Probe Microscopyen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃英碩,胡恩德,廖先順,楊志文,莊博景
dc.subject.keyword壓電蜂鳴片,掃描器,韌性,可靠度,旗桿式結構,可調行程,磁石堆疊,正交性,次奈米級,掃描探針顯微術,zh_TW
dc.subject.keywordPiezoelectric buzzer,Scanner,Toughness,Reliability,Flagpole structure,Scan-range adjustable,Magnet-stacking,Orthogonality,Sub-nano,Scanning probe microscopy,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201804340
dc.rights.note有償授權
dc.date.accepted2018-12-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
11.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved