Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71626
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛人愷
dc.contributor.authorChuan-Zong Linen
dc.contributor.author林傳宗zh_TW
dc.date.accessioned2021-06-17T06:04:56Z-
dc.date.available2024-01-24
dc.date.copyright2019-01-24
dc.date.issued2019
dc.date.submitted2019-01-21
dc.identifier.citation1. John B. Lambert and John J. Rausch, Fansteel Inc., ASM Handbook, Vol. 2 , ASM International, Materials Park, OH, 1992, pp. 1693-1741.
2. S. H. Baghjari, F. M. Ghaini, H. R. Shahverdi, Laser welding of niobium to 410 steel with a nickel interlayer produced by electro spark deposition, Mater. Des. 107 (2016) 108-116.
3. A. Kumar, P. Ganesh, R. Kaul, Process development for vacuum brazed niobium–316L stainless steel transition joints for superconducting cavities, J. Manuf. Sci. Eng. 139 (1) (2017) 1-8.
4. A. Kumar, P. Ganesh, R. Kaul, New brazing recipe for ductile niobium-316L stainless steel joints, Weld. J., 94 (2015) 241-249.
5. J. D. Fuerst, W. F. Toter, K. W. Shepard, Niobium to stainless steel braze transition development, Proc. Workshop on RF-Superconductivity, (2003) 305-307.
6. N. Wang, D. P. Wang, Z. W. Yang, Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals, Ceram. Int. 42 (2016) 12815-12824.
7. R. Terrence Webster, Teledyne Wah Chang Albany, Metallurgy of Zirconium and Its Alloys, Zirconium and Hafnium, Vol. 02, ASM Handbook, ASM International, Materials Park, OH, 1992, pp. 1954-1962.
8. P.E. Danielson and R.C. Sutherlin, Metallography and microstructures of zirconium, hafnium, and their alloys, Metallography and Microstructures, Vol. 9, ASM Handbook, ASM International, Materials Park, OH, 2004, p. 2277.
9. A.R. Massih, Transformation kinetics of zirconium alloys under non-isothermal conditions, J. Nucl. Mater. 384 (2009) 330-335.
10. T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells, Electro. Comm. 7 (2005) 183-188.
11. A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction, Langmuir 22 (2006) 2392-2396.
12. E. Frackowiak, G. Lota, T. Cacciaguerra, F. Beguin, Carbon nanotubes with Pt–Ru catalyst for methanol fuel cell, Electro. Comm. 8 (2006) 129-132.
13. I. Robel, G. Girshkumar, B.A. Bunker, P.V. Kamat, Structural changes and catalytic activity of platinum nanoparticles supported on C60 and carbon nanotube films during the operation of direct methanol fuel cells, Appl. Phys. Lett 88 (2006) 073113.
14. H.F. Cui, J.S. Ye, W.D. Zhang, J. Wang, F.S. Sheu, Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode, J. Electroanal. Chem. 577 (2005) 295-302.
15. Z.Q. Tian. S.P. Jiang, Y.M. Liang, P.K. Shen, Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications, J. Phys. Chem. B 110 (2006) 5343-5350.
16. G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells, Langmuir 21 (2005) 8487-8494.
17. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, J. Phys. Chem. B 107 (2003) 6292-6299.
18. T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catalysis Today 90 (2004) 277-281.
19. Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir 18 (2002) 4054-4060.
20. E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, Pt−Ru/Carbon fiber nanocomposites :  synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance, J. Phys. Chem. B 106 (2002) 760-766.
21. R. Szymanski, H. Charcosset, Platinum-zirconium alloy catalysts supported on carbon or zirconia, Platinum Metals Rev. 30 (1986) 23-27.
22. P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross, Zirconia as a support for catalysts Influence of additives on the thermal stability of the porous texture of monoclinic zirconia, Applied Catalysis, 71 (1991) 363-391.
23. Sekharipuram Narayanan, Jay Whitacre, Thomas Valdez, Nanophase nickel-zirconium alloys for fuel cells, NASA's Jet Propulsion Laboratory, (2008) 19.
24. V.B. Trindade, R.S.T. Mello, J.C. Payão, R.P.R. Paranhos, Influence of zirconium on microstructure and toughness of low-alloy steel weld metals, J. Mater. Eng. Perf. 15 (2006) 284-286.
25. K.H. Kim, J.G. Lee, G.J. Lee, J.J. Park, M.K. Lee, Compositional effects of Zr-rich multi-component brazing alloys on the corrosion of Zr alloy joints, Corros. Sci. 88 (2014) 328-336.
26. K.H. Kim, C.H. Lim, J.G. Lee, M.K. Lee, C.K. Rhee, Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon, J. Nucl. Mater. 441 (2013) 59-66.
27. Jung G. Lee, C.H. Lim, K.H. Kim, S.S. Park, M.K. Lee, C.K. Rhee, Brazing characteristics of a Zr–Ti–Cu–Fe eutectic alloy filler metal for zircaloy-4, J. Nucl. Mater. 441 (2013) 431-438.
28. M. Ahmad, J.I. Akhter, M.A. Shaikh, M. Akhtar, M. Iqbal, M.A. Chaudhry, Hardness and microstructural studies of electron beam welded joints of zircaloy-4 and stainless steel, J. Nucl. Mater. 301 (2002) 118-121.
29. M. Ahmad, J. I. Akhter, M. Akhtar, M. Iqbal, Microstructure and characterization of phases in TIG welded joint of zircaloy-4 and stainless steel 304L, J. Mater. Sci. 42 (2007) 328-331.
30. A. Ravi Shankar, S. Suresh Babu, Mohammed Ashfaq, U. Kamachi Mudali, K. Prasad Rao, N. Saibaba, and Baldev Raj, Dissimilar joining of zircaloy-4 to type 304L stainless steel by friction welding process, J. Mater. Eng. Perf. 18 (2009) 1272-1279.
31. K. Bhanumurthy, J. Krishnan, G.B. Kale, and S. Banerjee, Transition joints between zircaloy-2 and stainless steel, J. Nucl. Mater. 217 (1997) 67-74.
32. K. Bhanumurthy, J. Krishnan, G.B. Kale, R.K. Fotedar, A.R. Biswas, and R.N. Arya, Tubular transition joint between zircaloy-2 and stainless steel, J. Mater. Process. Technol. 54 (1995) 322-325.
33. J.I. Akhter, M. Ahmad, M. Iqbal, M. Akhtar, and M.A. Shaikh, Formation of dendritic structure in the diffusion zone of the bonded zircaloy-4 and stainless steel 316L in the presence of Ti interlayer, J. Alloy. Compd. 399 (2005) 96-100.
34. H.I. Shaaban and F.H. Hammad, Investigation of diffusion-bonding between zircaloy-4 and 304 stainless steel, J. Nucl. Mater. 71 (1978) 277-285.
35. B. Zaid, M. Taouinet, N. Souami, and S. Lebaili, Microstructure and corrosion aspects of dissimilar joints of zircaloy-4 and 304L stainless steel, J. Mater. Eng. Perf. 22 (2013) 854-862.
36. M. Mazar Atabaki, M.E. Bajgholi, E.H. Dehkordi, Partial transient liquid phase diffusion bonding of zirconium alloy (Zr–2.5Nb) to stainless steel 321, Mater. Des. 42 (2012) 172-183.
37. M. E. Bajgholi, E.Heshmat Dehkordi, Vacuum brazing of zirconium-based alloy and 321 stainless steel using titanium based filler metal, J. Adv. Mater. Pro. 1 (2013) 51-59.
38. T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990.
39. J.N. DuPont, A.R. Marder, Dilution in single pass arc welds, Metall. Mater. Trans. B 27B (6) (1996) 481-489.
40. P. Villars, K. Cenzual, Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds, 2016ed, ASM International(OH), 2016.
41. W.B.Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys Vol. 4, 2013ed, Elsevier Science, 2013.
42. B. Predel, Landolt-Börnstein - Group IV Physical Chemistry book series (volume 5 J), Springer, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71626-
dc.description.abstract為了評估 Nb 及 Zircaloy-2 接合的特性,分別使用 Ti-35Ni-15Nb 及 Ti-25Ni-15Nb 做為硬銲填料,在不同溫度及時間進行真空硬銲,將 Nb 與 Nb 及Zircaloy-2 與 Zircaloy-2 分別接合。
於 Nb/Ti-35Ni-15Nb/Nb 的實驗中,銲道組織主要是由 Ti2Ni 及 TiNi 介金屬化合物與球狀的 (β-Ti,Nb) 固溶體所組成。自 BEI 的分析中可以得知,裂縫主要由黑色的 Ti2Ni 介金屬化合物生成及成長。銲道強度因 Ti2Ni 介金屬化合物的生成而降低。然而,提高硬銲溫度可以降低 Ti2Ni 介金屬化合物的生成量,進而使得銲道生成大量的球狀 (β-Ti,Nb) 固溶體。實驗結果顯示,使用Ti-35Ni-15Nb 填料可被應用在 Nb 與 Nb 的接合。
使用 Ti-25Ni-15Nb 接合 Zircaloy-2 與 Zircaloy-2 ,可以發現硬銲溫度越高及硬銲時間越長,網狀銲道組織越發達。在 900 oC 時,銲道組織中可發現有黑色的 Zr2Ni 及 ZrTiNi 生成。當溫度提升至 1200 oC時,銲道組織主要為網狀組織,其銲道剪力強度可達到 365 MPa。
zh_TW
dc.description.abstractTo evaluate niobium and zircaloy-2 joints characteristics, vacuum brazing niobium using Ti-35Ni-15Nb foil and zircaloy-2 using Ti-25Ni-15Nb foil in different brazing temperature and brazing time were performed.
In vacuum brazing niobium experiment, the joint consists of Ti2Ni, TiNi intermetallic compounds and globular (β-Ti,Nb) particles. From SEM backscattered electron image analyse, cracks primarily initiated and grown along the black Ti2Ni intermetallic compound of the joint. The black Ti2Ni intermetallic compound would decay the shear strength of the joint. However, increasing brazing temperature would decrease the amounts of the Ti2Ni intermetallic compound, and form many globular (β-Ti,Nb) particles. Ti-35Ni-15Nb filler is a good candidate and shows potential in brazing niobium.
In the vacuum brazing zircaloy-2 using Ti-25Ni-15Nb study, increasing the brazing temperature and brazing time, the basketweave structure formed much apparently. Some long-rod structures and small black particles mixed and spread in the basketweave structure. When the joint brazed at 900 degrees centigrade, joint is comprised of black Zr2Ni and ZrTiNi intermetallic compounds. At 1200 degrees centigrade, the basketweave structure was the main structure of the joint. When the experiment performed at 1200 degrees centigrade for 60 minutes, the average shear strength of joint is increased to 365 MPa.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:04:56Z (GMT). No. of bitstreams: 1
ntu-108-D02527005-1.pdf: 14903398 bytes, checksum: 90655547d14b6da3777276314f69f4aa (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
第一章 前言 1
第二章 文獻回顧 2
2-1鈮金屬及其合金 2
2-1-1鈮金屬及其合金特性 2
2-1-2鈮合金銲接 2
2-2鋯金屬及其合金 3
2-2-1鋯金屬及其合金特性 3
2-2-2鋯合金之應用 5
2-2-3鋯合金銲接 6
第三章 實驗方法與步驟 15
3-1硬銲試片製作 15
3-1-1 Nb/Ti-35Ni-15Nb/Nb 試片 15
3-1-2 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 試片 15
3-1-3 試片製備 15
3-2剪力試驗 16
3-3 SEM 破斷面分析 16
3-4 EPMA 顯微組織及定量分析 17
3-5 Nb 金相試片製作及觀察 17
3-6 Nb 合金硬度量測 17
3-7 FESEM顯微組織及EDS半定量分析 17
3-8 振動拋光 (Vibratory Polisher) 17
3-9 離子研磨拋光 (Miller) 18
3-10 電子背向散射繞射分析 (Electron Backscattered Diffraction,EBSD) 18
3-11 X-ray Diffraction Analysis 18
第四章 結果與討論 21
4-1 Nb/Ti-35Ni-15Nb/Nb 21
4-1-1 Nb 基材金相組織及微硬度 21
4-1-2 Nb/Ti-35Ni-15Nb/Nb 銲道顯微組織 22
4-1-3 Nb/Ti-35Ni-15Nb/Nb 銲道成份分析 22
4-1-4 Nb/Ti-35Ni-15Nb/Nb 剪力試驗 23
4-1-5 Nb/Ti-35Ni-15Nb/Nb 破斷面 24
4-2 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 44
4-2-1 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 銲道顯微組織觀察 44
4-2-2 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 銲道成份分析 44
4-2-3 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 剪力試驗 45
4-2-4 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 破斷面觀察 46
4-2-5 以FESEM觀察Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2顯微組織及EDS半定量分析 46
4-2-6 以EBSD分析900 oC硬銲10 分鐘的Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2銲道組織 49
4-2-7 1200 oC硬銲60 分鐘的Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2銲道破斷面的高功率XRD結構分析 50
第五章 結論 95
5-1 Nb/Ti-35Ni-15Nb/Nb 硬銲結果 95
5-2 Zircaloy-2/Ti-25Ni-15Nb/Zircaloy-2 硬銲結果 95
未來工作 97
參考文獻 98
主要學經歷 102
Publication List 103
dc.language.isozh-TW
dc.subject真空硬銲zh_TW
dc.subject鈮金屬zh_TW
dc.subject鋯金屬zh_TW
dc.subjectZircaloy-2zh_TW
dc.subject鈦基填料zh_TW
dc.subjectTi-based filleren
dc.subjectVacuum brazingen
dc.subjectNiobium metalen
dc.subjectZirconium metalen
dc.subjectzircaloy-2en
dc.title鈮與鋯金屬真空硬銲之研究zh_TW
dc.titleThe Study of Vacuum Brazing Niobium and Zirconium Metalsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee郭東昊,蔡履文,鄭勝隆,陳文祥
dc.subject.keyword真空硬銲,鈮金屬,鋯金屬,Zircaloy-2,鈦基填料,zh_TW
dc.subject.keywordVacuum brazing,Niobium metal,Zirconium metal,zircaloy-2,Ti-based filler,en
dc.relation.page103
dc.identifier.doi10.6342/NTU201900139
dc.rights.note有償授權
dc.date.accepted2019-01-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
14.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved