Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71265
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛承輝
dc.contributor.authorYen-Shin Chenen
dc.contributor.author陳嬿昕zh_TW
dc.date.accessioned2021-06-17T05:01:47Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citation[1] T.J. Whang, M.T. Hsieh, T.E. Shi, C.H. Kuei, UV-Irradiated photocatalytic degradation of nitrobenzene by titania binding on quartz tube, Int. J. Photoenergy, 2012 (2012).
[2] F. Tisa, A.A.A. Raman, W.M.A.W. Daud, Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review, J. Environ. Manage., 146 (2014) 260–275.
[3] C.J. Escudero, O. Iglesias, S. Dominguez, M.J. Rivero, I. Ortiz, Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation, J. Environ. Manage., 195 (2017) 117–124. [4] K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film, J. Photoch. Photobio. A, 156 (2003) 227–233.
[5] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
[6] S. Matsuda, A. Kato, Titanium oxide based catalysts-a review, Appl. Catal., 8 (1983) 149–165.
[7] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
[8] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem., 81 (1977) 1484–1488.
[9] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O'shea, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B-Environ., 125 (2012) 331– 349.
[10] H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry, Chem. Rev., 112 (2012) 5919–5948.
[11] S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with solar energy at a pilot- plant scale: an overview, Appl. Catal. B-Environ., 37 (2002) 1–15.
[12] Y. Hou, F. Zuo, A. Dagg, P. Feng, Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting, Nano Lett., 12 (2012) 6464–6473.
[13] M.L. Chen, Z.D. Meng, L. Zhu, C.Y. Park, J.G. Choi, T. Ghosh, K.Y. Cho, W.C. Oh, Synthesis of carbon nanomaterials-CdSe composites and their photocatalytic activity for degradation of methylene blue, J. Nanomater., 2012 (2012) 21–28.
[14] C. An, S. Peng, Y. Sun, Facile synthesis of sunlight‐driven AgCl: Ag plasmonic nanophotocatalyst, Adv. Mater., 22 (2010) 2570–2574.
[15] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photoch. Photobio. A, 108 (1997) 1–35.
[16] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
[17] K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photoch. Photobio. C, 13 (2012) 169–189.
[18] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
[19] J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson Jr, J.V. Smith, Structural- electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 109 (1987) 3639–3646.
[20] T.R. Esch, I. Gadaczek, T. Bredow, Surface structures and thermodynamics of low-index of rutile, brookite and anatase–A comparative DFT study, Appl. Surf. Sci., 288 (2014) 275–287.
[21] F. Fujishima, TiO2 photocatalysis fundamentals and applications, A Revol. Clean. Tech., (1999) 14–21.
[22] A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95 (1995) 49–68.
[23] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res., 52 (2013) 3581–3599.
[24] M. Zayat, P. Garcia-Parejo, D. Levy, Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating, Chem. Soc. Rev., 36 (2007) 1270–1281.
[25] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature, 424 (2003) 824–825.
[26] M.R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B.T. Cunningham, T.C. Bond, G.L. Liu, Colorimetric plasmon resonance imaging using nano lycurgus cup arrays, Adv. Opt. Mater., 1 (2013) 68–76.
[27] G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 330 (1908) 377–445.
[28] R. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev., 106 (1957) 874. [29] M.C. Estevez, M.A. Otte, B. Sepulveda, L.M. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors: A review, Anal. Chim. Acta, 806 (2014) 55–73. [30] J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater., 7 (2008) 442.
[31] K.a. Catchpole, A. Polman, Plasmonic solar cells, Opt. Express, 16 (2008) 21793– 21800.
[32] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater., 9 (2010) 205.
[33] N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna- enhanced gas sensing in a single tailored nanofocus, Nat. Mater., 10 (2011) 631.
[34] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 27 (1998) 241–250.
[35] M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nat. Nanotech., 10 (2015) 25.
[36] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58 (2007) 267–297.
[37] E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light, Z. Naturforsch. A, 23 (1968) 2135–2136.
[38] E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, 257 (1992) 189–195.
[39] G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering, Nano Lett., 3 (2003) 935–938.
[40] W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography, Nano Lett., 4 (2004) 1085–1088.
[41] J.M. Brockman, B.P. Nelson, R.M. Corn, Surface plasmon resonance imaging measurements of ultrathin organic films, Annu. Rev. Phys. Chem., 51 (2000) 41–63.
[42] W. Knoll, Interfaces and thin films as seen by bound electromagnetic waves, Annu. Rev. Phys. Chem., 49 (1998) 569–638.
[43] H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, W. Knoll, Probing the
evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies, J. Chem. Phys., 98 (1993) 10093–10095.
[44] S. Schubin, S. Wonsowsky, On the electron theory of metals, Proc. R. Soc. Lond. A, 145 (1934) 159–180.
[45] S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photon., 3 (2009) 388.
[46] N.L. Gruenke, M.F. Cardinal, M.O. McAnally, R.R. Frontiera, G.C. Schatz, R.P. Van Duyne, Ultrafast and nonlinear surface-enhanced Raman spectroscopy, Chem. Soc. Rev., 45 (2016) 2263–2290.
[47] A. Alu, N. Engheta, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett., 100 (2008) 113901.
[48] N.A. Hatab, C.H. Hsueh, A.L. Gaddis, S.T. Retterer, J.H. Li, G. Eres, Z. Zhang, B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy, Nano Lett., 10 (2010) 4952–4955.
[49] J. Zuloaga, P. Nordlander, On the energy shift between near-field and far-field peak intensities in localized plasmon systems, Nano Lett., 11 (2011) 1280–1283.
[50] J.D. Jackson, Classical electrodynamics, Wiley, (1999).
[51] P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem., 1 (2008) 601–626.
[52] M.A. García, Surface plasmons in metallic nanoparticles: fundamentals and applications, J. Phys. D Appl. Phys., 44 (2011) 283001.
[53] R. Brown, Absorption and scattering of light by small particles, Opt. Acta Int. J. Opt., 31 (1984) 3.
[54] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer Science & Business Media, (2013).
[55] K.C. Lee, S.J. Lin, C.H. Lin, C.S. Tsai, Y.J. Lu, Size effect of Ag nanoparticles on surface plasmon resonance, Surf. Coat. Tech., 202 (2008) 5339–5342.
[56] J. Mock, M. Barbic, D. Smith, D. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys., 116 (2002) 6755– 6759.
[57] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotech., 3 (2008) 270. [58] S. Tkachev, E.Y. Buslaeva, A. Naumkin, S. Kotova, I. Laure, S. Gubin, Reduced graphene oxide, Inorg. Mater., 48 (2012) 796–802.
[59] J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett., 8 (2008) 3137–3140.
[60] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183.
[61] A.K. Geim, Graphene: status and prospects, Science, 324 (2009) 1530–1534.
[62] M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 19 (2007) 4396– 4404.
[63] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater., 19 (2009) 1987–1992.
[64] J.W. Kim, Y.C. Shin, J.J. Lee, E.B. Bae, Y.C. Jeon, C.M. Jeong, M.J. Yun, S.H. Lee, D.W. Han, J.B. Huh, The effect of reduced graphene oxide-coated biphasic calcium phosphate bone graft material on osteogenesis, Int. J. Mol. Sci., 18 (2017) 1725.
[65] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
[66] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 81 (2002) 454–456.
[67] C. Shifu, C. Lei, G. Shen, C. Gengyu, The preparation of coupled WO3/TiO2 photocatalyst by ball milling, Powder Technol., 160 (2005) 198–202.
[68] J. Zhou, L. Li, Preparation of CdSe nanoparticle-deposited TiO2 nanobelts and their visible-light photocatalysis, Spectrosc. Spect. Anal., 31 (2011) 1398–1402.
[69] M.L. de Souza, P. Corio, Effect of silver nanoparticles on TiO2-mediated photodegradation of Alizarin Red S, Appl. Catal. B-Environ., 136 (2013) 325–333.
[70] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobio. C Photochem. Rev., 15 (2013) 1– 20.
[71] X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis, Rep. Prog. Phys., 76 (2013) 046401.
[72] E. Albert, P.A. Albouy, A. Ayral, P. Basa, G. Csík, N. Nagy, S. Roualdes, V. Rouessac, G. Safran, A. Suhajda, Antibacterial properties of Ag–TiO2 composite sol–gel coatings, RSC Adv., 5 (2015) 59070–59081.
[73] M.S. Wong, C.W. Chen, C.C. Hsieh, S.C. Hung, D.S. Sun, H.H. Chang, Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light, Sci. Rep., 5 (2015) 11978.
[74] D. Wodka, E. Bielanska, R.P. Socha, M. Elzbieciak Wodka, J. Gurgul, P. Nowak, P. Warszyński, I. Kumakiri, Photocatalytic activity of titanium dioxide modified by silver nanoparticles, ACS Appl. Mater. Inter., 2 (2010) 1945–1953.
[75] P. Ribao, M.J. Rivero, I. Ortiz, TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid, Environ. Sci. Pollut. R, 24 (2017) 12628–12637.
[76] J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, C. Jiang, Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island, Nanoscale Res. Lett., 7 (2012) 239.
[77] T. Lee, B.K. Chao, Y.L. Kuo, C.H. Hsueh, Improvement of photocatalytic activities of Ag/P25 hybrid systems by controlled morphology of Ag nanoprisms, Mater. Chem. Phys., 192 (2017) 78–85.
[78] B. Pietrobon, V. Kitaev, Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties, Chem. Mater., 20 (2008) 5186–5190.
[79] Z. Wang, J. Liu, W. Chen, Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability, Dalton T., 41 (2012) 4866–4870.
[80] S. Mubeen, G. Hernandez Sosa, D. Moses, J. Lee, M. Moskovits, Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers, Nano Lett., 11 (2011) 5548–5552.
[81] Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, H. Misawa, Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au- nanorods/TiO2 electrode, J. Phys. Chem. Lett., 1 (2010) 2031–2036.
[82] V.P. Zhdanov, C. Hägglund, B. Kasemo, Relaxation of plasmons in nm-sized metal particles located on or embedded in an amorphous semiconductor, Surf. Sci., 599 (2005) L372–L375.
[83] C. Langhammer, Z. Yuan, I. Zorić, B. Kasemo, Plasmonic properties of supported Pt and Pd nanostructures, Nano Lett., 6 (2006) 833–838.
[84] S. Link, M.A. El-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals, Annu. Rev. Phys. Chem., 54 (2003) 331–366.
[85] J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Heterogenous catalysis mediated by plasmon heating, Nano Lett., 9 (2009) 4417–4423.
[86] Z.C. Wu, Y. Zhang, T.X. Tao, L. Zhang, H. Fong, Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water, Appl. Surf. Sci., 257 (2010) 1092–1097.
[87] S. Sun, W. Wang, L. Zhang, M. Shang, L. Wang, Ag@ C core/shell nanocomposite as a highly efficient plasmonic photocatalyst, Catal. Commun., 11 (2009) 290–293.
[88] X. Zheng, X. Zhao, D. Guo, B. Tang, S. Xu, B. Zhao, W. Xu, J.R. Lombardi, Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength, Langmuir, 25 (2009) 3802–3807.
[89] H. Jia, W. Xu, J. An, D. Li, B. Zhao, A simple method to synthesize triangular silver nanoparticles by light irradiation, Spectrochim. Acta A., 64 (2006) 956–960.
[90] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
[91] S. Kundu, S.K. Ghosh, M. Mandal, T. Pal, Reduction of methylene blue (MB) by ammonia in micelles catalyzed by metal nanoparticles, New J. Chem., 27 (2003) 656–662. [92] R.P. Sugavaneshwar, K. Chen, G. Lakshminarayana, S. Ishii, T.D. Dao, N. Umezawa, T. Nagao, Plasmon mediated cathodic photocurrent generation in sol-gel synthesized doped SrTiO3 nanofilms, APL Mater., 3 (2015) 116103.
[93] B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations, JOSA A, 11 (1994) 1491–1499.
[94] D.B. Davidson, Computational electromagnetics for RF and microwave engineering, Cambridge University Press, (2010).
[95] A. Taflove, S.C. Hagness, M. Piket-May, Computational electromagnetics: the finite-
difference time-domain method, The Electrical Engineering Handbook, Elsevier Inc., (2005).
[96] G.P. Lee, Y. Shi, E. Lavoie, T. Daeneke, P. Reineck, U.B. Cappel, D.M. Huang, U. Bach, Light-driven transformation processes of anisotropic silver nanoparticles, ACS Nano, 7 (2013) 5911–5921.
[97] R. Jin, Y.C. Cao, E. Hao, G.S. Métraux, G.C. Schatz, C.A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature, 425 (2003) 487. [98] W. Zhang, J. Cui, C.a. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, A strategy for producing pure single‐layer graphene sheets based on a confined self‐assembly approach, Angew. Chem., 121 (2009) 5978–5982.
[99] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61 (2000) 14095.
[100] Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu, J. Gao, One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation, Carbon, 50 (2012) 2513–2523.
[101] T.N. Blanton, D. Majumdar, Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, Powder Diffr., 28 (2013) 68–71.
[102] M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. AlSalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films, Nanoscale Res. Lett., 6 (2011) 434.
[103] D. Chaudhary, S. Singh, V. Vankar, N. Khare, A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation, Int. J. Hydrogen Energ., 42 (2017) 7826–7835.
[104] M. Janczarek, Z. Wei, M. Endo, B. Ohtani, E. Kowalska, Silver-and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst, J. Photon. Energ., 7 (2016) 012008.
[105] H. Al Ekabi, N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix, J. Phys. Chem., 92 (1988) 5726–5731.
[106] M.A. Lazar, S. Varghese, S.S. Nair, Photocatalytic water treatment by titanium dioxide: recent updates, Catalysts, 2 (2012) 572–601.
[107] Y.L. Kuo, H.W. Chen, Y. Ku, Analysis of silver particles incorporated on TiO2 coatings for the photodecomposition of o-cresol, Thin Solid Films, 515 (2007) 3461–3468. [108] F. Wang, K. Zhang, Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B, J. Mol. Catal. A Chem., 345 (2011) 101–107.
[109] M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution, Appl. Catal. B-Environ., 203 (2017) 85–95.
[110] J. Lu, F. Su, Z. Huang, C. Zhang, Y. Liu, X. Ma, J. Gong, N-doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation, RSC Adv., 3 (2013) 720–724.
[111] Y. Fang, B. Zhang, L. Hong, K. Zhang, G. Li, J. Jiang, R. Yan, J. Chen, Mechanism of photocatalytic activity improvement of AgNPs/TiO2 by oxygen plasma irradiation, Nanoscale, 8 (2016) 17004–17011.
[112] M. Zang, L. Shi, L. Liang, D. Li, J. Sun, Heterostructured gC3N4/Ag–TiO2 composites with efficient photocatalytic performance under visible-light irradiation, RSC Adv., 5 (2015) 56136–56144.
[113] J. Okumu, C. Dahmen, A. Sprafke, M. Luysberg, G. Von Plessen, M. Wuttig, Photochromic silver nanoparticles fabricated by sputter deposition, J. Appl. Phys., 97 (2005) 094305.
[114] S. Morales Torres, L.M. Pastrana Martínez, J.L. Figueiredo, J.L. Faria, A.M. Silva, Design of graphene-based TiO2 photocatalysts–a review, Environ. Sci. Pollut. R., 19 (2012) 3676–3687.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71265-
dc.description.abstract半導體材料中二氧化鈦(TiO2)是常見的光觸媒,藉由光激發產生電子—電洞 對進而生成具有強活性之自由基去解決有機污染廢水之問題。然而,太陽光譜中僅 有微量的紫外線部分可以被 TiO2 所吸收,而且產生的電子—電洞對的再結合速率 很高,造成 TiO2 在陽光下光催化效率不彰。在本研究中,我們在商用型號 P25 二 氧化鈦中添加了銀奈米粒子和還原氧化石墨烯(RGO)來構建三元複合系統光觸 媒,以提高 TiO2 的光催化性能。我們準備了三種不同幾何形狀的銀奈米結構,包 括球體 (Sphere),十面體(Decahedron)和三角板(Prism)。藉由摻入的銀奈米結 構提供局部表面電漿共振(LSPR)進而增加的可見光之光吸收;除此之外,RGO 的添加更抑制了電子—電洞對之再結合。本研究中,利用實驗搭配模擬系統,採用 時域有限差分法(FDTD)模仿在日光燈照射下,三種不同幾何奈米銀結構所造成 的電場強度分佈,驗證了銀奈米結構的 LSPR 效應。 改質過後的三元複合光觸媒, 以添加十面體奈米銀以及三角板奈米銀效果最具顯著,在白光照射下,顯示出比商 用二氧化鈦光觸媒高 8 倍以上的光催化效率。zh_TW
dc.description.abstractTiO2 Nano powder (P25) is the commonly used commercial photocatalyst. However, because only a small ultraviolet portion of solar spectrum can excite the electron-hole pairs and their recombination rate is high, its efficiency is limited. In this study, we added silver nanostructures and reduced graphene oxide (RGO) to construct ternary plasmonic catalyst to improve the catalytic performance of TiO2. We prepared three different geometries of Ag nanostructures including sphere, decahedron and prism. While the incorporated Ag nanostructures led to an increase in light absorption due to localized surface plasmon resonance (LSPR), the RGO inhibited the charge recombination and enhanced the electron-hole separation inTiO2. The finite-difference time-domain method was adopted to simulate the electric field intensity distributions on three different geometries of Ag nanoparticles irradiated by the florescent lamp to verify the corresponding LSPR effects. Both Ag nanodecahedrons/TiO2/RGO and Ag nanoprisms/TiO2/RGO hybrid photocatalysts possessed remarkable photocatalytic activity, which decolorized the dyes up to 80% under white light irradiation for only 1 h and displayed over 8 times higher photocatalytic efficiency than pure TiO2 photocatalyst.en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:01:47Z (GMT). No. of bitstreams: 1
ntu-107-R05527049-1.pdf: 6237532 bytes, checksum: e697b8b697de4049e64ca6cb07f152a9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
ACKNOWLEDGEMENT i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Introduction of Photocatalyst 1
1.1.1 The History of Photocatalyst 1
1.1.2 Photocatalysis 2
1.2 Titanium Dioxide 3
1.2.1 Crystal Structure and Characteristic of TiO2 3
1.2.2 The Photocatalytic Reaction Mechanism of TiO2 5
1.2.3 The Drawbacks of TiO2 Photocatalyst 6
1.3 Plasmonic Theory 8
1.3.1 Propagating Surface Plasmon Resonance (PSPR) 10
1.3.2 Localized Surface Plasmon Resonance (LSPR) 12
1.4 Reduced Graphene Oxide 16
1.5 The Modification of TiO2-based Photocatalyst 17
1.5.1 Plasmonic Photocatalysis 17
1.5.2 The specific mechanism of plasmonics photocatalyst 19
Chapter 2 Motivation 22
Chapter 3 Experimental Sections 23
3.1 Synthesis of Silver Nanostuctures 23
3.2 Synthesis of Reduced Graphene Oxide (RGO) 24
3.3 Synthesis of Ag/TiO2 and Ag/TiO2/RGO Hybrid Systems 25 3.4Photocatalytic Activities 26
3.5Equipment 29
3.6Finite Difference Time Domain Simulation (FDTD) 29
Chapter 4 Results and Discussions 30
4.1 Characterization of Plasmonic Photocatalyst 30
4.1.1 Transmittance Electron Telescope 30
4.1.2 Raman Spectroscopy 32
4.1.3 X-Ray Diffractometer 34
4.1.4 Ultraviolet and Visible Spectrometer 35
4.2 Photocatalytic Activities 37
4.2.1 Ag/TiO2 Binary Systems 37
4.2.2 Ag/TiO2/RGO Ternary Systems 39
4.3 Mechanism of Catalysts 42
4.4 Simulations 44
Chapter 5 Conclusions 47
REFERENCE 48
dc.language.isoen
dc.title電漿子三元複合系統增強二氧化鈦光觸媒效率zh_TW
dc.titleImprovement of Photocatalytic Efficiency by Adding Ag Nanoparticles and Reduced Graphene Oxide to TiO2en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰,謝宗霖
dc.subject.keyword電漿子學,光觸媒,奈米結構,還原氧化石墨烯,時域有限差分法,zh_TW
dc.subject.keywordPlasmonics,Photocatalyst,Nanostructures,Reduced graphene oxide,Finite-difference time-domain simulation,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201801880
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
6.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved