Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝(Feng-Hui Lin)
dc.contributor.authorChong-Xuan Wangen
dc.contributor.author王崇軒zh_TW
dc.date.accessioned2021-06-17T05:01:20Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citation[1] Health, United States, 2016, U.S. Department of Health and Human Services, 2016.
[2] U.S.D.o.H.a.H. Services, Health US Report 2013.
[3] I.I.f.H. Informatics, Global Oncology Trend Report A Review of 2015 and Outlook to 2020 IMS Institute for Healthcare Informatics, 2016.
[4] A.J.A. Bremers, E.J.T. Rutgers, C.J.H. Van De Velde, Cancer surgery: The last 25 years, Cancer Treatment Reviews 25(6) (1999) 333-353.
[5] K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer, J.H. Rowland, K.D. Stein, R. Alteri, A. Jemal, Cancer treatment and survivorship statistics, 2016, CA Cancer J Clin 66(4) (2016) 271-89.
[6] C.M. Hancock, M.A. Burrow, The role of radiation therapy in the treatment of central nervous system tumors, Seminars in Oncology Nursing 20(4) (2004) 253-259.
[7] X. Wu, J. Gu, T.T. Wu, S.G. Swisher, Z. Liao, A.M. Correa, J. Liu, C.J. Etzel, C.I. Amos, M. Huang, S.S. Chiang, L. Milas, W.N. Hittelman, J.A. Ajani, Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer, J Clin Oncol 24(23) (2006) 3789-98.
[8] J.G. McVie, Cancer treatment: The last 25 years, Cancer Treatment Reviews 25(6) (1999) 323-331.
[9] M. Raida, K. Höffken, W. Schwabe, P. Häusler, D. Behnke, A.B.P. Van Kuilenburg, A.H. Van Gennip, Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls, Clinical Cancer Research 7(9) (2001) 2832-2839.
[10] T細胞輸入療法 -- 癌症治療新境界, 臺灣醫界 53 (2010) 452-454.
[11] M. Mallory, E. Gogineni, G.C. Jones, L. Greer, C.B. Simone, 2nd, Therapeutic hyperthermia: The old, the new, and the upcoming, Crit Rev Oncol Hematol 97 (2016) 56-64.
[12] J. van der Zee, Heating the patient: a promising approach?, Annals of Oncology 13(8) (2002) 1173-1184.
[13] S. Dhaneshwar, K. Patil, M. Bulbule, V. Kinjawadekar, D. Joshi, V. Joshi, Photodynamic therapy for cancer, International Journal of Pharmaceutical Sciences Review and Research 27(2) (2014) 125-141.
[14] N. Nishiyama, Y. Morimoto, W.-D. Jang, K. Kataoka, Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy, Advanced Drug Delivery Reviews 61(4) (2009) 327-338.
[15] Z.S. Silva, Jr., S.K. Bussadori, K.P. Fernandes, Y.Y. Huang, M.R. Hamblin, Animal models for photodynamic therapy (PDT), Biosci Rep 35(6) (2015).
[16] K.C. Sadanala, P.K. Chaturvedi, Y.M. Seo, J.M. Kim, Y.S. Jo, Y.K. Lee, W.S. Ahn, Sono-photodynamic combination therapy: A review on sensitizers, Anticancer Research 34(9) (2014) 4657-4664.
[17] B. McCaughan, C. Rouanet, C. Fowley, N. Nomikou, A.P. McHale, P.A. McCarron, J.F. Callan, Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs, Bioorg Med Chem Lett 21(19) (2011) 5750-2.
[18] L. Serpe, F. Foglietta, R. Canaparo, Nanosonotechnology: the next challenge in cancer sonodynamic therapy, Nanotechnology Reviews 1(2) (2012).
[19] G.Y. Wan, Y. Liu, B.W. Chen, Y.Y. Liu, Y.S. Wang, N. Zhang, Recent advances of sonodynamic therapy in cancer treatment, Cancer Biol Med 13(3) (2016) 325-338.
[20] H. Shibaguchi, H. Tsuru, M. Kuroki, M. Kuroki, Sonodynamic cancer therapy: A non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer, Anticancer Research 31(7) (2011) 2425-2430.
[21] A.K. Wood, C.M. Sehgal, A review of low-intensity ultrasound for cancer therapy, Ultrasound Med Biol 41(4) (2015) 905-28.
[22] L. Serpe, F. Giuntini, Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation, J Photochem Photobiol B 150 (2015) 44-9.
[23] W. Zhu, M. Alkhazal, M. Cho, S. Xiao, Microbubble generation by piezotransducer for biological studies, Rev Sci Instrum 86(12) (2015) 124901.
[24] S.K. Bhangu, M. Ashokkumar, Theory of Sonochemistry, Top Curr Chem (Cham) 374(4) (2016) 56.
[25] A.P. McHale, J.F. Callan, N. Nomikou, C. Fowley, B. Callan, Sonodynamic therapy: Concept, mechanism and application to cancer treatment, Advances in Experimental Medicine and Biology, 2016, pp. 429-450.
[26] S. Paliwal, S. Mitragotri, Ultrasound-induced cavitation: applications in drug and gene delivery, Expert Opin Drug Deliv 3(6) (2006) 713-26.
[27] H.L. Liu, C.H. Fan, C.Y. Ting, C.K. Yeh, Combining microbubbles and ultrasound for drug delivery to brain tumors: Current progress and overview, Theranostics 4(4) (2014) 432-444.
[28] A. Sazgarnia, A. Shanei, H. Eshghi, M. Hassanzadeh-Khayyat, H. Esmaily, M.M. Shanei, Detection of sonoluminescence signals in a gel phantom in the presence of Protoporphyrin IX conjugated to gold nanoparticles, Ultrasonics 53(1) (2013) 29-35.
[29] I. Rosenthal, J.Z. Sostaric, P. Riesz, Sonodynamic therapy--a review of the synergistic effects of drugs and ultrasound, Ultrason Sonochem 11(6) (2004) 349-63.
[30] X. Qian, Y. Zheng, Y. Chen, Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation, Adv Mater 28(37) (2016) 8097-8129.
[31] Z. Zou, H. Chang, H. Li, S. Wang, Induction of reactive oxygen species: an emerging approach for cancer therapy, Apoptosis 22(11) (2017) 1321-1335.
[32] L.B. Feril, Jr., T. Kondo, Z.G. Cui, Y. Tabuchi, Q.L. Zhao, H. Ando, T. Misaki, H. Yoshikawa, S. Umemura, Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line, Cancer Lett 221(2) (2005) 145-52.
[33] S.B. Brown, E.A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment, The Lancet Oncology 5(8) (2004) 497-508.
[34] H. Xu, X. Zhang, R. Han, P. Yang, H. Ma, Y. Song, Z. Lu, W. Yin, X. Wu, H. Wang, Nanoparticles in sonodynamic therapy: state of the art review, RSC Advances 6(56) (2016) 50697-50705.
[35] H. Tong, N. Enomoto, M. Inada, Y. Tanaka, J. Hojo, Synthesis of mesoporous TiO2 spheres and aggregates by sol–gel method for dye-sensitized solar cells, Materials Letters 141 (2015) 259-262.
[36] Y.-T. Lin, C.-H. Weng, Y.-H. Lin, C.-C. Shiesh, F.-Y. Chen, Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst, Separation and Purification Technology 116 (2013) 114-123.
[37] K. Palanivelu, J.-S. Im, Y.-S. Lee, Carbon Doping of TiO 2 for Visible Light Photo Catalysis - A review, 2007.
[38] S. Kohtani, E. Yoshioka, H. Miyabe, Photocatalytic Hydrogenation on Semiconductor Particles, (2012).
[39] K. Ninomiya, C. Ogino, S. Oshima, S. Sonoke, S. Kuroda, N. Shimizu, Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles, Ultrason Sonochem 19(3) (2012) 607-14.
[40] E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums, J.-G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 29 (2016) 1-28.
[41] C.-C. Yang, Y.-J. Sun, P.-H. Chung, W.-Y. Chen, W. Swieszkowski, W. Tian, F.-H. Lin, Development of Ce-doped TiO 2 activated by X-ray irradiation for alternative cancer treatment, Ceramics International 43(15) (2017) 12675-12683.
[42] 林麗娟, X光繞射原理及其應用, 工業材料 86期.
[43] 汪建民, 材料分析, 中國材料科學學會2005.
[44] TAKARA, Premix WST-1 cell proliferation assay system.
[45] C.C. Church, Frequency, pulse length, and the mechanical index, Acoustics Research Letters Online 6(3) (2005) 162-168.
[46] A. Sazgarnia, A. Shanei, Evaluation of Acoustic Cavitation in Terephthalic Acid Solutions Containing Gold Nanoparticles by the Spectrofluorometry Method, International Journal of Photoenergy 2012 (2012) 1-5.
[47] abcam, DCFDA Cellular ROS Detection Assay Kit, abcam.
[48] TAKARA, LDH cytotoxicity detection kit.
[49] Invitrogen, LIVE/DEAD ® Viability/Cytotoxicity Kit *for mammalian cells*, 2005.
[50] M.M.T.a.C.P. Reynolds, Determination of subcutaneous tumor size in athymic (nude) mice*, Cancer Chemother Pharmacol 24 (1989) 148 - 154.
[51] BALB/c Nude Mouse Clinical Pathology Data, Charles River.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71257-
dc.description.abstract癌症已經連續40年高居美國十大死因的前兩名,每分鐘都有人因為癌症而喪生。雖然目前醫學上已具有許多有效的癌症治療方法,但也伴隨著為數不少的副作用,因此尋找較低副作用的療法刻不容緩。聲動力療法是以穿透力良好的超音波,藉由空化作用的產生,激發病患體內的聲敏感材料,並產生自由基,以有效清除癌細胞。但受限於目前大部分聲敏感材料皆為卟啉結構的有機材料,一旦注射入動物體內後,吸收特定波段的光或能量,會造成分子變化,產生光毒性(Phototoxicity),造成皮膚發紅並腫脹。同時,由於大部分的聲敏感材料在生理環境中會因其疏水性與易於團聚等特性,而使得聲動力治療時之ROS的生成量下降。然而,奈米材料被視為是一個能有效解決此問題的方法,而其中二氧化鈦奈米粉末因為出色的材料特性而最受人注目。因此在本研究中我希望利用碳摻雜的二氧化鈦奈米粉末,並藉由超音波的作用產生ROS,達到更好的清除癌細胞效果。
在本研究中利用溶膠凝膠法(sol-gel)製備出具球狀碳摻雜二氧化鈦,藉由電子顯微鏡與粒徑分析,其粒徑大小約為157 nm且大小均一分散均勻。透過XRD確認材料結晶結構為銳鈦礦型的二氧化鈦,並透過EDS和AES的分析,確認在二氧化鈦中有碳的摻雜,以XPS進一步了解碳摻雜進材料中,形成C-Ti-O的鍵結。在細胞實驗的部分,碳摻雜二氧化鈦具有良好的生物相容性。聲動力治療組和其他組別相比,能造成更多ROS自由基的產生,顯著地對乳癌細胞產生細胞毒性,使其細胞活性降低。同時在LIVE/DEAD的分析上也觀察到相同的結果。在動物實驗的部分,聲動力治療組與其他組別相比,腫瘤的增生速度明顯減緩,在治療的第七天已經出現統計上的差異,證實碳摻雜二氧化鈦奈米粉末經由超音波的作用下,藉由慣性空化作用熱解的氫氧自由基和聲致發光激發材料產生的單重態氧加成的效果下,能有效抑制乳癌細胞的增生。
zh_TW
dc.description.abstractCancer has been the top two leading cause of death in US for consecutive 40 years. Every minute there are people died of cancer. Although currently there are a lot of effective cancer treatments, however, these treatments have some side effects. Thus, alternative therapies with fewer side effects are urgently required. Sonodynamic therapy is an effective treatment for eliminating tumor cells by irradiating sonosentitizer in patient’s body with higher penetration ultrasound and inducing the free radicals. Nevertheless, most recent sonosensitizers made of porphyrin-based organic materials that have phototoxicity on the skin under a certain wavelength of light or energy irradiation. Likewise, most sonosensitizers were hydrophobic and easy to aggregate in physiological condition, leading to reduction of their ROS production. Nonetheless, the development of nanoparticles shows a promising potential to solve these problems. Titanium dioxide has appealed for the most attention due to its properties among many nanosensitizers. Hence, in this study, carbon doped titanium dioxide, one of inorganic materials, is applied to avoid the foregoing, and furthermore, carbon doped titanium dioxide is used to generate ROS under ultrasound irradiation to eliminate tumor cells.
Spherical carbon doped titanium dioxide nanoparticles are synthesized by sol-gel process, and it was shown that particle size of the material is around 157 nm via EM and Zetasizer analysis. Through XRD analysis, it was indicated that the crystal structure of carbon doped titanium dioxide was anatase, this was reconfirmed by TEM diffraction pattern result. By EDS, AES and XPS analysis, it was also confirmed that carbon has been doped in titanium dioxide through the bonding with titanium. The forming of C-Ti-O bond may also induce defects in lattice which would be beneficial for the phenomenon of sonoluminescence to improve the effectiveness of sonodynamic therapy. By dint of DCFDA, WST-1, LDH and Live/Dead test, carbon doped titanium dioxide nanoparticles are shown to be a biocompatible material which may induce ROS radicals to suppress the proliferation of 4T1 breast cancer cell under ultrasound treatment. From in vivo study, carbon doped titanium dioxide nanoparticles activated by ultrasound may inhibit the growth of the 4T1 tumor, and it showed significant difference between SDT and the other groups on the seventh day of the treatment. The results are corroborated that carbon doped titanium dioxide nanoparticles activated by ultrasound are able to inhibit the proliferation of 4T1 tumor cell through the enhancement of hydroxyl radicals and singlet oxygen.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:01:20Z (GMT). No. of bitstreams: 1
ntu-107-R05527013-1.pdf: 5551576 bytes, checksum: b37c0720234239188a3754aa4a4a1cb1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝
口試委員會審定書 #
中文摘要 i
ABSTRACT ii
目錄 iv
表目錄 vii
圖目錄 viii
公式目錄 x
縮寫目錄 xi
第一章 簡介 1
1.1 前言 1
1.2 癌症治療方法 3
1.2.1 外科手術(Surgery) 3
1.2.2 放射線治療(Radiation therapy) 3
1.2.3 化學藥物治療(Chemotherapy) 3
1.2.4免疫療法(Immunotherapy) [10] 4
1.2.5 熱治療(Hyperthermia) 4
1.2.6 光動力療法(Photodynamic therapy) 5
1.2.7聲動力療法(Sonodynamic therapy) 6
1.3 研究目的 7
第二章 理論基礎 8
2.1 聲動力療法 8
2.2 超音波 9
2.2.1 空化作用 10
2.2.2 超音波誘發的凋亡機制 11
2.3 聲敏感材料 13
2.4 碳摻雜的二氧化碳 14
2.4.1 主體材料-二氧化鈦 14
2.4.2 碳的摻雜 16
第三章 實驗方法 17
3.1 實驗儀器 17
3.2 實驗藥品 18
3.3 實驗架構 19
3.4 材料製備 20
3.5 材料分析 21
3.5.1 X光繞射分析儀(XRD, X-ray Diffraction) 21
3.5.2 掃描式電子顯微鏡(SEM, Scanning Electron Microscope) 22
3.5.3穿透式電子顯微鏡(TEM, Transmisson Electron Microscope) 22
3.5.4 奈米粒徑量測儀(Zetasizer) 22
3.5.5 能量散射光譜儀(EDS, Energy Dispersive Spectrometer) 23
3.5.6 歐傑電子能譜儀(AES, Auger Electron Spectroscopy) 23
3.5.7 X光電子能譜儀(XPS, X-ray Photoelectron Spectroscopy ) 24
3.6 生物相容性試驗 25
3.6.1 細胞株培養 25
3.6.2 材料萃取液製備 25
3.6.3 WST-1 細胞活性測試 26
3.7 超音波裝置 28
3.7.1 裝置的設置 28
3.7.2 超音波參數的選擇 28
3.7.3 慣性空化作用的測定 29
3.8 體外測試(In vitro study) 30
3.8.1 ROS的生成 30
3.8.2 WST-1 細胞活性測試 31
3.8.3 LDH 細胞毒性測試 33
3.8.4 Live/Dead分析 35
3.9 動物實驗(In vivo study) 36
3.9.1 實驗模型的建立 36
3.9.2 安全性測試 37
3.10 統計方法 38
第四章 結果與討論 39
4.1 材料性質分析 39
4.1.1 X光繞射分析 39
4.1.2 微結構分析 40
4.1.3 材料粒徑分析 41
4.1.4 組成與鍵結分析 42
4.1.5 超音波參數的評估 45
4.2 生物相容性分析 46
4.3 體外測試(In vitro study) 47
4.3.1 ROS的生成 47
4.3.2 WST-1 細胞活性測試 48
4.3.3 LDH 細胞毒性測試 49
4.3.4 Live/Dead分析 50
4.4 動物實驗(In vivo study) 52
4.4.1 存活率變化 52
4.4.2 體重變化 53
4.4.3 腫瘤大小的變化 54
4.4.4 組織切片 55
4.4.5 血液分析 59
第五章 結論 61
第六章 參考文獻 62
dc.language.isozh-TW
dc.subject乳癌治療zh_TW
dc.subject聲敏感材料zh_TW
dc.subject碳摻雜二氧化鈦zh_TW
dc.subject聲動力療法zh_TW
dc.subject超音波zh_TW
dc.subject腫瘤治療zh_TW
dc.subjectultrasounden
dc.subjectsonodynamic therapyen
dc.subjectcarbon doped titanium dioxideen
dc.subjectsonosensitizersen
dc.subjectbreast cancer treatmenten
dc.subjectcancer treatmenten
dc.title以碳摻雜二氧化鈦奈米粉末藉由聲動力療法作癌症治療zh_TW
dc.titleSonodynamic Therapy using C-doped TiO2 nanoparticles for Cancer Treatmenten
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳景欣,柯承志,許志雄
dc.subject.keyword聲動力療法,碳摻雜二氧化鈦,聲敏感材料,超音波,腫瘤治療,乳癌治療,zh_TW
dc.subject.keywordsonodynamic therapy,carbon doped titanium dioxide,sonosensitizers,ultrasound,cancer treatment,breast cancer treatment,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201801893
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved