請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71225| 標題: | 黎曼—羅赫定理的一個代數方法之證明 A Proof of Riemann-Roch Theorem by Algebraic Methods |
| 作者: | Hao-Wei Huang 黃皓偉 |
| 指導教授: | 蔡宜洵(I-Hsun Tsai) |
| 關鍵字: | 同調代數,指標定理, sheaf,homological algebra,spectral sequence,Riemann-Roch theorem, |
| 出版年 : | 2018 |
| 學位: | 碩士 |
| 摘要: | We start from some basic notions, like sheaves and cohomology, and try to introduce and prove Riemann-Roch theorem in the 2-dimension case. The definition of cohomology of a sheaf is more difficult to compute in some situation. However, the Čech cohomology of a sheaf over a paracompact space is isomorphic to the usual definition of cohomology,and Čech cohomology gives us a more concrete way to think what the cohomology of a sheaf is. In chapter 3 we introduce the concept of twisted complexes. We will use it to compute Ext and the class in Čech cohomology which is in the statement of Riemann-Roch theorem, and identify this class with characteristic class Td in cochain level by direct computation. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71225 |
| DOI: | 10.6342/NTU201801660 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
