Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宜洵(I-Hsun Tsai)
dc.contributor.authorHao-Wei Huangen
dc.contributor.author黃皓偉zh_TW
dc.date.accessioned2021-06-17T04:59:35Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citation1. Schechtman, V. V. , Riemann-Roch theorem after D. Toledo and Y.-L. Tong. Proceedings of the Winter School Geometry and Physics. Palermo: Circolo Matematico di Palermo, [53]-81,1989.
2. Toledo, D. , Tong, Y. L. , A parametrix for overline partial and Riemann-Roch in Cech theory. Topology, v. 15, 1976.
3. Toledo,D. , Tong, Y. L. , Duality and intersection theory in complex manifolds. I. Math. Ann. 237, 1978.
4. O'Brian, N. , Toledo, D. , Tong, Y. L. , The trace map and characteristic classes for coherent sheaves. Amer. J. Math. 103, 1981.
5. O'Brian, N. , Toledo, D. , Tong, Y. L. , Hirzebruch-Riemann-Roch for coherent sheaves. Ibid. , 103, 1981.
6. Hartshorne, R. , Algebraic Geometry. Springer, 1977.
7. Huybrechts, D. , Complex Geometry An introduction. Springer-Verlag Berlin Heidelberg, 2005.
8. Weibel, C. A. , An Introduction to Homological Algebra. Cambridge University Press, 1994.
9. Griffiths, P. , Harris, J. , Principles of Algebraic Geometry. John Wiley & Sons, 1978.
10. Eisenbud, D. , Harris, J. , The Geometry of Scheme. Springer-Verlag New York, 2000, 17.
11. Grothendieck, A. , Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki, t. 9, 1956-1957, No. 149.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71225-
dc.description.abstractWe start from some basic notions, like sheaves and cohomology, and try to introduce and prove Riemann-Roch theorem in the 2-dimension case. The definition of cohomology of a sheaf is more difficult to compute in some situation. However, the Čech cohomology of a sheaf over a paracompact space is isomorphic to the usual definition of cohomology,and Čech cohomology gives us a more concrete way to think what the cohomology of a sheaf is. In chapter 3 we introduce the concept of twisted complexes. We will use it to compute Ext and the class in Čech cohomology which is in the statement of Riemann-Roch theorem, and identify this class with characteristic class Td in cochain level by direct computation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:59:35Z (GMT). No. of bitstreams: 1
ntu-107-R04221010-1.pdf: 2386480 bytes, checksum: c5662079e9bd0c29d87cef8df57e1609 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
英文摘要 iii
Chapter 1 Introduction 1
Chapter 2 Sheaves Cohomology 2
2.1 Derived functors 2
2.2 Sheaves 3
2.3 Čech cohomology 8
Chapter 3 Duality 11
3.1 Ext group 11
3.2 Gysin map 13
Chapter 4 Homological technique 16
4.1 Spectral sequences 16
4.2 Koszul complex 20
4.3 Twisted complexes 23
Chapter 5 Local calculations 27
5.1 Constructions of 1-cocycle 27
5.2 Computing the class 31
參考文獻 39
dc.language.isoen
dc.subject同調代數zh_TW
dc.subject指標定理zh_TW
dc.subjectsheafen
dc.subjecthomological algebraen
dc.subjectspectral sequenceen
dc.subjectRiemann-Roch theoremen
dc.title黎曼—羅赫定理的一個代數方法之證明zh_TW
dc.titleA Proof of Riemann-Roch Theorem by Algebraic Methodsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮凱(Jung-Kai Chen),黃一樵(I-Chiao Huang)
dc.subject.keyword同調代數,指標定理,zh_TW
dc.subject.keywordsheaf,homological algebra,spectral sequence,Riemann-Roch theorem,en
dc.relation.page39
dc.identifier.doi10.6342/NTU201801660
dc.rights.note有償授權
dc.date.accepted2018-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved