Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韋文誠(Wen-Cheng Wei)
dc.contributor.authorYu-Hung Chengen
dc.contributor.author鄭聿紘zh_TW
dc.date.accessioned2021-06-17T04:53:45Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation[1] Z. Shao, S.M. Haile, Nature 431 (2004) 170-173.
[2] Y.W. Ju, J. Hyodo, A. Inoishi, S. Ida, T. Ishihara, J. Mater. Chem. A 3 (2015) 3586-3593.
[3] H. Inaba, H. Tagawa, Solid State Ionic 83 (1996) 1-16.
[4] L. Minervini, M. O. Zacate, R. W. Grimes, Solid State Ionic 116 (1999) 339-349.
[5] K. Eguchi, J. Alloys Compd. 250 (1997) 486-491.
[6] V. V. Kharton, F. M. Figueiredo, L. Navarro, E. N. Naumovich, A. V. Kovalevsky, A. A. Yaremchenko, A. P. Viskup, J. Mater. Sci. 36 (2001) 1105-1117.
[7] W. S. Jang, S. H. Hyun, J. Master. Sci. 37 (2002) 2535-2541.
[8] C. Chiu, National Taiwan University Master Thesis, 2017.
[9] S. M. Haile, Acta Mater. 51 (2003) 5981-6000.
[10] 韋文誠, 固體燃料電池技術, 高立圖書有限公司, 新北市, 2013.
[11] S. Dikmen, P. Shuk, M. Greenblatt, Solid State Ionic 112 (1998) 3299-307.
[12] L. Bourja, B. Bakiz, A. Benlhachemi, M. Ezahri, S. Villain, C. Favotto, J.-R. Gavarri, Adv. Mater. Sci. Eng. 2012 (2012) 11 pages.
[13] L. Bourja, B. Bakiz, A. Benlhachemi, M. Ezahri, S. Villain, O. Crosnier, C. Favotto, J.-R. Gavarri, J. Solid State Chem. 184 (2011) 608-614.
[14] G. Li, L. Li, S. Feng, M. Wang, L. Zhang, X. Yao, Adv. Mater. 11 (1999) 146-149.
[15] G.-B. Jung, T.-J. Huang, C.-L. Chang, J. Solid State Electrochem. 6 (2002) 225-230.
[16] T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, T. Ikegami, Solid State Ionic 154-155 (2002) 461-466.
[17] M. Shiono, K. Kobayashi, T. L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, Solid State Ionic 170 (2004) 1-7.
[18] A. Mai, V. A.C. Haanappel, S. Uhlenbruck, F. Tietz, D. Stover, Solid State Ionic 176 (2005) 1341-1350.
[19] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, J. Appl. Electrochem. 18 (1988) 527-531.
[20] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, J. Mater. Sci. 23 (1988) 1036-1041.
[21] J. A. Kilner, R.J. brook, Solid State Ionic 6 (1982) 237-252.
[22] S. Omar, E. D. Wachsman, J. L. Jones, J. C. Nino, J. Am. Ceram. Soc. 92 (2009) 2674-2681.
[23] V. Gil, J. Tartaj, C. Moure, P. Duran, J. Eur. Ceram. Soc. 26 (2006) 3161-3171.
[24] V. Gil, J. Tartaj, C. Moure, P. Duran, J. Eur. Ceram. Soc. 27 (2007) 801-805.
[25] Z. Tianshu, P. Hing, H. Huang, J. Kilner, Mater. Sci. Eng. B83 (2001) 235-241.
[26]T.S. Zhang, L.B. Kong, Z.Q. Zeng, H.T. Huang, P. Hung, Z.T. Xia, J. Kilner, J. Solid State Electrochem. 7 (2003) 348-354.
[27] H. Shimada, A. Hagiwara, Solid State Ionic 258 (2014) 38-44.
[28] Z. Tianshu, P. Hing, H. Huang, J. Kilner, J. Mater. Sci. 37 (2002) 997-1003.
[29] Z. Tianshu, P. Hing, H. Huang, J. Kilner, J. Mater. Process. Technol. 113 (2001) 463-468.
[30] A.S. Mehranjani, D.J. Cumming, D.C. Sinclair, R.H. Rothman, J. Eur. Ceram. Soc. 37 (2017) 3981-3993.
[31] N. A. Harwig, A. G. Gerards, Thermochim. Acta 28 (1979) 121-131.
[32] A. Watanabe, Solid State Ionics 40/41 (1990) 889-892.
[33] T. Takahashi, H. Iwahara, J. Appl. Electrochem. 3 (1973) 65-72.
[34] T. Takahashi, H. Iwahara, T. Esaka, J. Electrochem. Soc. 124 (1977) 1563-1568.
[35] K. Huang, M. Feng, J. B. Goodenough, Solid State Ionics 89 (1996) 17-24.
[36] S. Boyapati, E. D. Wachsman, N. Jiang, Solid State Ionics 140 (2001) 149-160.
[37] N. Jiang, R. M. Buchanan, F. E. G. Henn, A. F. Marshall, D. A. Stenenson, E. D. Wachsman, Mater. Res. Bull. 29 (1994) 247-254.
[38] M. Yan, T. Mori, J. Zou, J. Drennan, J. Am. Ceram. Soc. 92 (2009) 2745-2750.
[39] X. He, X. Peng, Y. Zhu, C. Lai, C. Ducati, R. V. Kumar, Jgreen Chem. 17 (2015) 4637-4646.
[40] N. Stevulova, J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka, M. Holub, Mater. (Basel) 7 (2014) 8131-8150.
[41] Y. Zheng, M. Zhou, L. Ge, S. Li, H. Chen, L. Guo, J. Alloys Compd. 509 (2011) 546-550.
[42] M.Y. Chu, M.N. Rahaman, L.C.D. Jonghe, J. Am. Ceram. 74 (1991) 1217-1225.
[43] T. Zhang, H. Peter, H. Haitao, J. Mater. Sci. 37 (2002) 997-1003.
[44] T. Zhang, H. Peter, H. Haitao, J. Kilner, Mater. Sci. Eng. B83 (2001) 235-241.
[45] T. Zhang, H. Peter, H. Haitao, J. Kilner, J. Mater. Process. Technol. 113 (2001) 463-468
[46] T.-Y. Lin, National Taiwan University Master Thesis, 2012.
[47] A. Watanabe, Solid State Ionics 34 (1989) 35-39.
[48] K.Z. Fung, J. Chen, A.V. Virkar, J. Am. Ceram. 76 (1993) 2403-2418.
[49] D. Tang, W. Zhou, J. Solid State Chem. 119 (1995) 311-318.
[50] X.P. Wang, G. Corbel, S. Kodjikian, Q.F. Fang, P. Lacorre, J. Solid State Chem. 179 (2006) 3338-3346.
[51] I. Abrahams, F. Krok, M. Struzik, J.R. Dygas, Solid State Ionics 179 (2008) 1013-1017.
[52] D. Wang, National Taiwan University Master Thesis, 2016.
[53] Z. Wang, X. Huang, Z. Lv, Y. Zhang, B. Wei, X. Zhu, Z. Wang, Z. Liu, Ceram. Int. 41 (2015) 4410-4415.
[54] M. Matsuda, T. Hosomi, K. Murata, T. Fukui, M. Miyake, J. Power Sources 165 (2007) 102-107.
[55] B. Ruger, A. Weber, E. Ivers-Tiffee, ECS Trans. 7 (2007) 2065-2074.
[56] Y.-Y. Chen, National Taiwan University Doctoral Dissertation, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71115-
dc.description.abstract本研究探討鉍、錳、鐵共摻雜氧化鈰之電解質材料之合成、燒結行為、電性劣化與應用於中溫固態燃料電池電解質之電能輸出表現。以EDTA-檸檬酸法合成特定摻雜量的粉末,利用熱膨脹儀(DIL)和密度量測研究燒結行為,以X光繞射法(XRD)分析結晶相,以及數種電子顯微鏡觀察微結構。先前(邱傑)的研究報導鉍的固溶限為8-9 at%,錳、鐵的固溶限少於1 at%。鉍錳鐵共摻雜氧化鈰(Ce0.9(Bi0.09Mn0.5Fe0.5)O2,簡稱 9HH)可以在1050°C持溫1小時燒結緻密,其熱膨脹係數約為15.5x10-6 K-1,和陰極材料鑭鍶鈷鐵(LSCF-6428)匹配。在650°C長時間的電性穩定性測試,顯示鉍摻雜氧化鈰的材料可以透過添加微量的錳、鐵明顯的提升高溫導電性,而劣化主要原因來自於第二相r相氧化鉍的生成與氧空位的聚集。最後,五層結構的單電池之結構中含緻密8YSZ(3.1 μm)/9HH(2.2 μm)雙層電解質,改善後之電池在800°C之輸出為242 mW.cm-2。zh_TW
dc.description.abstractThe effects of bismuth, manganese and iron co-doping in ceria-based materials used as electrolyte of solid oxide fuel cells have been investigated in this study. The powders are synthesized by EDTA-citric acid method. The sintering behavior is analyzed by dilatometry (DIL) and density measurement. X-ray Diffraction (XRD) is used to identify crystalline phases. Microstructure of the samples is observed by various electron microscopies. Previous work (by J. Chiu) reported that the solubility limit of Mn and Fe in ceria is less than 1 at% while that of Bi is at 8-9 at% in the presence of Mn and Fe. Ce0.9(Bi0.09Mn0.5Fe0.5)O2 can be sintered dense only at 1050°C for 1 hr. Its
coefficient of thermal expansion (CTE) is about 15.5x10-6 K-1 within 30-800°C, matches with CTE of LSCF-6428. Long-term stability of Bi-doped ceria can be improved by doping trace amount of Mn and Fe because the formation of second phase (r-Bi2O3) and vacancy ordering would be suppressed even annealing at 650oC for 100 hr. Finally, the anode-supported cells of 5 layers are assembled and improved. The improved cell containing 8YSZ (3.1 μm)/9HH (2.2 μm) bilayer electrolyte shows a maximum power output of 242 mW.cm-2 at 800°C.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:53:45Z (GMT). No. of bitstreams: 1
ntu-107-R05527060-1.pdf: 6297959 bytes, checksum: 4576300c5e88c41f5eb831d84436ef93 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Electrolyte Materials for Solid Oxide Fuel Cells 5
2.1.1 Development of Electrolyte Materials 5
2.2 CeO2-Based Materials 7
2.2.1 Effect of Bi3+ dopant in Ceria 8
2.2.2 Effects of Mn3+ and Fe3+ Dopants in Ceria 10
2.3 Conductivity Degradation 10
Chapter 3 Experimental Procedure 16
3.1 Materials 16
3.2 Ce1-x-2y(BixMnyFey)O2 Preparation 16
3.3 Single Cell Fabrication 17
3.4 Characterization 19
3.4.1 Sedimentation Test 19
3.4.2 Density Measurement 20
3.4.3 X-ray Diffraction Analysis 20
3.4.4 Microstructure Observation 21
3.4.5 Thermogravimetric Analysis 22
3.4.6 Dilatometric Analysis 22
3.4.7 Mass Loss Analysis 23
3.4.8 Electrical Conductivity Measurement 23
3.5 Single Cell Test 26
Chapter 4 Results 37
4.1 Properties of Synthesized Powder 37
4.1.1 Phase Identification 37
4.1.2 Solution Limit 38
4.2 Sintering Behavior 44
4.2.1 Thermal Shrinkage Analysis 44
4.2.2 Sintering Density 45
4.2.3 TEM Observation 46
4.2.4 Short-Term Electrical Conductivity 48
4.2.5 Thermal Expansion Analysis 49
4.3 Conductivity Degradation 61
4.3.1 Phase Stability 61
4.3.2 Vacancy Ordering 62
4.3.3 Bi Sublimation 63
4.4 Assembly and Tests of Anode-Supported SOFC 73
4.4.1 NiO-8YSZ Anode Substrate 73
4.4.2 8YSZ Electrolyte Layer 74
4.4.3 9HH Electrolyte Layer 76
4.4.4 LSCF-9HH Composite Cathode Layer 77
4.4.5 Cell Tests 78
4.4.6 Cell Improvement 79
Chapter 5 Discussion 95
Chapter 6 Conclusions 99
Reference 101
Appendix 105
dc.language.isoen
dc.subject電解質zh_TW
dc.subject螢石結構zh_TW
dc.subject氧化鈰zh_TW
dc.subject固態燃料電池zh_TW
dc.subject電性劣化zh_TW
dc.subject燒結zh_TW
dc.subjectceriaen
dc.subjectfluorite structureen
dc.subjectelectrolyteen
dc.subjectsinteringen
dc.subjectconductivity degradationen
dc.subjectSOFCen
dc.title鉍錳鐵摻雜氧化鈰材料用於中溫固態燃料電池電解質之研究zh_TW
dc.title(Bi, Mn, Fe)-Doped Ceria Electrolyte Materials for IT-SOFCsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳玉娟(Yu-Chuan Wu),郭俞麟(Yu-Lin Kuo)
dc.subject.keyword氧化鈰,螢石結構,電解質,燒結,電性劣化,固態燃料電池,zh_TW
dc.subject.keywordceria,fluorite structure,electrolyte,sintering,conductivity degradation,SOFC,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201802111
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved