請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韋文誠(Wen-Cheng Wei) | |
| dc.contributor.author | Yi-Ting Huang | en |
| dc.contributor.author | 黃怡婷 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:46:46Z | - |
| dc.date.available | 2019-08-02 | |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-01 | |
| dc.identifier.citation | [1] 周志勳,銅基材料於固態燃料電池之應用與熱熔擠組件開發,國立台灣大學碩士論文,(2015)。
[2] 王柏崴,高熱膨脹氧化物玻璃用於熱熔擠出及電絕緣特性之應用研究,國立台灣大學碩士論文,(2016)。 [3] W. F. Smith, J. Hashemi, Chapter 9 in Foundations of Materials Science and Engineering, The McGraw-Hill Companies, Inc., USA (2007). [4] P. Kratochvil, J. Mencl, J. Pesicka, S. N. Komnik, The structure and low temperature strength of the age hardened Cu-Ni-Sn alloys, Acta Metall. 32 (1984) 1493-1497. [5] R. F. North, M. J. Pryor, The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys, Corros. Sci. 10 (1970) 297-311. [6] H. Kim,C. Ku, W. L.Worrell, J. M. vohs, R. J. Gorte, Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells, J. Electrochem. Soc. 149 (2002) 247-250. [7] M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd Edition, McGraw-Hill Companies, Inc., New York, 1958. [8] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, Google Patents, 1986. [9] N.-N. Bui, J.T. Arena, J.R. McCutcheon, Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter, J. of Memb. Sci. 492 (2015) 289-302. [10] S.H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping J. 8(4) (2002) 248-257. [11] F.C. Godoi, S. Prakash, B.R. Bhandari, 3d printing technologies applied for food design: Status and prospects, J. Food Eng. 179 (2016) 44-54. [12] K. Kun, Reconstruction and Development of a 3D Printer Using FDM Technology, Procedia Engineering 149 (2016) 203-211. [13] A. Melocchi, F. Parietti, A. Maroni, A. Foppoli, A. Gazzaniga, L. Zema, Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling, Int J Pharm. 509(1-2) (2016) 255-263. [14] Z. Weng, J. Wang, T. Senthil, L. Wu, Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des. 102 (2016) 276-283. [15] C. Zhou, K. Yang, K. Wang, X. Pei, Z. Dong, Y. Hong, X. Zhang, Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds, Mater. Des. 109 (2016) 415-424. [16] D. Dai, D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments, Mater. Des. 55 (2014) 482-491. [17] S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology 18(34) (2007) 345202. [18] Y. Tang, H.T. Loh, Y.S. Wong, J.Y.H. Fuh, L. Lu, X. Wang, Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts, J. Mater. Process. Technol. 140(1-3) (2003) 368-372. [19] R.S. Evans, D.L. Bourell, J.J. Beaman, M.I. Campbell, Rapid manufacturing of silicon carbide composites, Rapid Prototyping J. 11(1) (2005) 37-40. [20] Y. Guo, L. Jia, S. Sun, B. Kong, J. Liu, H. Zhang, Rapid fabrication of Nb-Si based alloy by selective laser melting: Microstructure, hardness and initial oxidation behavior, Mater. Des. 109 (2016) 37-46. [21] K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, Three-Dimensional Spiral-Architecture Photonic Crystals Obtained By Direct Laser Writing, Adv. Mater. 17(5) (2005) 541-545. [22] J. Deckers, J. Vleugels, J.-P. Kruth, Additive Manufacturing of Ceramics: A Review, J. Ceram. Sci. Tech., 5(4) (2014) 245-260. [23] A.J. Lopes, I.H. Lee, E. MacDonald, R. Quintana, R. Wicker, Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography, J. Mater. Process. Technol. 214(9) (2014) 1935-1945. [24] J.W. Lee, I.H. Lee, D.-W. Cho, Development of micro-stereolithography technology using metal powder, Microelectron. Eng. 83(4-9) (2006) 1253-1256. [25] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Additive manufacturing of polymer-derived ceramics, Science 351(6268) (2016) 58. [26] Q. Liu, M. Orme, High precision solder droplet printing technology and the state-of-the-art, J. Mater. Process. Technol. 115(3) (2001) 271-283. [27] Z. Liu, Y. Su, K. Varahramyan, Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers, Thin Solid Films 478(1-2) (2005) 275-279. [28] B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films 515(19) (2007) 7706-7711. [29] C.R. Tubío, J. Azuaje, L. Escalante, A. Coelho, F. Guitián, E. Sotelo, A. Gil, 3D printing of a heterogeneous copper-based catalyst, J. Catal. 334 (2016) 110-115. [30] C.R. Tubío, F. Guitián, A. Gil, Fabrication of ZnO periodic structures by 3D printing, J. Eur. Ceram. Soc. 36(14) (2016) 3409-3415. [31] M. Xia, J. Sanjayan, Method of formulating geopolymer for 3D printing for construction applications, Mater. Des. 110 (2016) 382-390. [32] K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, 3D printing of interdigitated Li-ion microbattery architectures, Adv. Mater. 25(33) (2013) 4539-43. [33] X. Ren, H. Shao, T. Lin, H. Zheng, 3D gel-printing—An additive manufacturing method for producing complex shape parts, Mater. Des. 101 (2016) 80-87. [34] J.A. Lewis, Colloidal Processing of Ceramics, J J. Am. Ceram. Soc. 83(10) (2000) 2341-2359. [35] Y.-y. Li, L.-t. Li, B. Li, Direct write printing of three-dimensional ZrO2 biological scaffolds, Mater. Des. 72 (2015) 16-20. [36] M. Xia, J. Sanjayan, Method of formulating geopolymer for 3D printing for construction applications, Mater. Des. 110 (2016) 382-390. [37] N. C. Fan, W. C. J. Wei, B. H. Liu, A.B. Wang, R. C. Luo, Ceramic feedstocks for additive manufacturing, 2016 IEEE International Conference on Industrial Technology, March 14-17, 2016, Taipei, Taiwan. [38] J. Mireles, H.C. Kim, I.H. Lee, Development of a Fused Deposition Modeling System for Low Melting Temperature Metal Alloys, Journal of Electronic Packaging 135 (2013) 1-6. [39] W. C. J. Wei, High temperature heating and extrusion device for 3D AM, ROC patent CNS103 209734, 2014 [40] C.S. Chou, W.C.J. Wei, B.H. Liu, A.B. Wang, R.C. Luo, Cu-based alloys for 3DP by melt extrusion process, 2016 IEEE International Conference on Industrial Technology (ICIT), 2016, pp. 1152-1157. [41] P.W. Wang, C.S. Chou, W.C.J. Wei, B.H. Liu, A. Liu, A.B. Wang, R.C. Luo, Glass and hot extrusion by ME module for 3D additive manufacturing, 2016 IEEE International Conference on Industrial Technology (ICIT), 2016, pp. 1167-1171. [42] S.J. Pennycook, Williams, D.B. Carter, C. Barry, Transmission Electron Microscopy: A Textbook for Materials Science, Second Edition, Microsc. Microanal. 16(1) (2010) 111. [43] D.M. Longo, J.M. Howe, W.C. Johnson, Experimental method for determining Cliff–Lorimer factors in transmission electron microscopy (TEM) utilizing stepped wedge-shaped specimens prepared by focused ion beam (FIB) thinning, Ultramicroscopy 80(2) (1999) 85-97. [44] G. Cliff, G.W. Lorimer, The quantitative analysis of thin specimens, Journal of Microscopy 103(2) (1975) 203-207. [45] E. Metcalfe, J.P. Broomfield, Determination of Cliff-Lorimer k factors for a hitachi H700H 200 kV scanning transmission electronmicroscope, J. Phys. Colloq. 45(C2) (1984) C2-407-C2-410. [46] P.J. Statham, X-ray microanalysis with Si(Li) detectors, J. Microsc. 123(1) (1981) 1-23. [47] B.R. Munson, Fundamentals of fluid mechanics, New York : Wiley, New York, 1990. [48] J.S. Reed, Principles of ceramics processing, 2nd ed.. ed., New York : Wiley & Sons, New York, 1995. [49] J.J. Benbow, E.W. Oxley, J. Bridgwater, The extrusion mechanics of pastes—the influence of paste formulation on extrusion parameters, Chem. Eng. Sci. 42(9) (1987) 2151-2162. [50] A.W. Adamson, 陶雨台, 表面物理化學, 千華, 台北市, 1988. [51] J. Zheng, W.B. Carlson, J.S. Reed, Flow Mechanics on Extrusion through a Square-Entry Die, J. Am. Ceram. Soc. 75(11) (1992) 3011-3016. [52] P. Hrma, Arrhenius model for high-temperature glass-viscosity with a constant pre-exponential factor, J. Non-Cryst. Solids 354 (2008) 1962–1968 [53] M. T. Wang, J. S. Cheng, Viscosity and thermal expansion of rare earth containing soda–lime–silicate glass, J. Alloys Compd. 504 (2010) 273–276. [54] M. I. Ojovan, K. P. Travis, and R. J. Hand, Thermodynamic parameters of bonds in glassy materials from viscosity temperature relationships, J. Phys.: Condens. Matter 19 (2007) 415107. [55] M. Zimova, S. L. Webb, The combined effects of chlorine and fluorine on the viscosity of aluminosilicate melts, Geochim. Cosmochim. Acta 71 (2007) 1553–1562 [56] K. Pelissier, T. Chartier, and J. M. Laurent, Silicon carbide heating elements, Ceram. Int. 24 (1997) 371-77. [57] M. Tana, B. Xiufanga, X. Xianying, Z. Yanninga, G. Jinga, S. Baoan, Correlation between viscosity of molten Cu–Sn alloys and phase diagram, Physica B 387 (2007) 1–5. [58] M.M. Malik, M. Jeyakumar, M.S. Hamed, M.J. Walker, S. Shankar, Rotational rheometry of liquid metal systems: Measurement geometry selection and flow curve analysis, J. Non-Newton. Fluid Mech. 165(13) (2010) 733-742. [59] S. Ning, X. Bian, Z. Ren, Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys, Physica B 405(17) (2010) 3633-3637. [60] S. Yuzuru, S. Koji, A. Daisuke, Y. Tsutomu, Viscosities of Fe–Ni, Fe–Co and Ni–Co binary melts, Meas. Sci. Technol. 16(2) (2005) 363. [61] J. Goole, K. Amighi, 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems, Int J Pharm. 499(1-2) (2016) 376-394. [62] K.V. Wong, A. Hernandez, A Review of Additive Manufacturing, ISRN Mechanical Engineering 2012 (2012) 1-10. [63] X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Composites Part B 110 (2017) 442-458. [64] J.S. Mohammed, Applications of 3D printing technologies in oceanography, Methods in Oceanography 17 (2016) 97-117. [65] P.E. Champness, G. Cliff, G.W. Lorimer, Quantitative analytical electron microscopy of metals and minerals, Ultramicroscopy 8(1) (1982) 121-131. [66] J.I. Goldstein, Quantitative X-ray analysis in the electron microscope, Scanning Electron Microscopy 1977 (1977) 315-324. [67] X.J. Han, C. Yang, B. Wei, M. Chen, Z.Y. Guo, Rapid solidification of highly undercooled Ni–Cu alloys, Mater. Sci. Eng., A 307(1) (2001) 35-41. [68] S. Chen, C. Wang, Interfacial reactions of Sn-Cu/Ni couples at 250 °C, J. Mater. Res. 21(9) (2011) 2270-2277. [69] H. Fu, S. Song, L. Zhuo, Z. Zhang, J. Xie, Enhanced mechanical properties of polycrystalline Cu–Al–Ni alloy through grain boundary orientation and composition control, Mater. Sci. Eng., A 650 (2016) 218-224. [70] C. Lhymn, Effect of normal load on the specific wear rate of fibrous composites, Wear 120(1) (1987) 1-27. [71] J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik, D. Skoda, O. Zobac, J. Lee, Cu–Ni nanoalloy phase diagram – Prediction and experiment, Calphad 45 (2014) 33-39. [72] J.T. Plewes, High-strength Cu-Ni-Sn alloys by thermomechanical processing, Metall. Trans. A 6(3) (1975) 537. [73] L.H. Schwartz, J.T. Plewes, Spinodal decomposition in Cu-9wt% Ni-6wt% Sn—II. A critical examination of mechanical strength of spinodal alloys, Acta Metall. 22(7) (1974) 911-921. [74] H.J. Cho, W.J. Wei, H.C. Kao, C.K. Cheng, Wear behavior of UHMWPE sliding on artificial hip arthroplasty materials, Mater. Chem. Phys. 88(1) (2004) 9-16. [75] C.-C.T. Yang, W.-C.J. Wei, Effects of material properties and testing parameters on wear properties of fine-grain zirconia (TZP), Wear 242(1) (2000) 97-104. [76] 溫宗翰,六硼化鑭在富氧環境下之動力學及微結構分析,國立台灣大學碩士論文,(2003) [77] 陳志榮,納米碳化鎘/及鉬/氧化鋁基複合材料之製程與分析,國立台灣大學碩士論文,(2000) [78] W.W. R., Transport phenomena in metallurgy. G. H. Geiger and D. R. Poirier, Addison-Wesley Publishing Company, Reading, Mass. (1973). AIChE Journal 19(6) (1973) 1282-1283. [79] G.Y. Lai, High temperature corrosion of engineering alloys, Metals Park, OH (United States); American Society for Metals; None1990. [80] 黃坤祥,“粉末冶金學”,中華民國粉末冶金協會,(2001) 第二版 [81] J. Sun, and L. Gao, Dispersing SiC powder and improving its rheological behavior, J. Eur. Ceram. Soc. 21 (2001) 2447–2451. [82] R. Ramachandra Rao, H.N. Roopa, T.S. Kannan, Effect of pH on the dispersability of silicon carbide powders in aqueous media, Ceram. Int. 25(3) (1999) 223-230. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70979 | - |
| dc.description.abstract | 本研究採用前[1,2]設計開發的一種熔融擠出裝置,使用能在<1300 oC熔融之銅基合金進行智慧模具的3D列印,分析材料之相關性質,因此,研究目標放在該合金材料之硬度、耐磨性及成分之分析與進行熱擠出需要之作用力之探討。研究結果顯示,硬度特性方面,在相同熱處理條件下,銅9鎳6錫(硬度269 HV )明顯優於其他三種銅基合金,而銅6鎳2鋁合金(硬度237 HV )則次之,該硬度已高於以表層鍍鎳之鑰匙作為目標的硬度(207 HV )。後續研究以銅9鎳6錫為主要研究之材料,銅6鎳2鋁為備案。在接觸磨耗方面,測試結果符合硬度越高磨耗率越低之預期,呈線性(反比)關係。在成分之分析方面,利用能量散布光譜( Energy-dispersive X-ray spectroscopy,EDS)進行全定量成分分析,分析之技術利用銅6鎳2鋁做為標準樣品進行校正,用於分析線材或列印樣品的成分均勻性, 銅11鎳之平均分析結果顯示誤差值(standard deviation)在0.2 %以內。另一方面,藉由在室溫環境下模擬金屬高溫熔融擠出,在0.4 ~ 0.2 mm噴口的條件時,藉由量測四個作用力,了解高黏度(熔融玻璃)及銅金屬熔湯在氧化鋁噴嘴內之流變行為。 | zh_TW |
| dc.description.abstract | This study adapts a melt extrusion module [1, 2], which was designed and developed by our group, selects Cu-base alloys capable of melting at <1300 oC, and has conducted 3D printing to make smart mold in previous study. Therefore, this research objectives are to investigate the hardness, wear resistance and compositional uniformity of Cu-based alloys, and the forces required for the melt extrusion. The results show that the hardness (269 HV) of annealed Cu-9Ni-6Sn is obviously superior to Cu-6Ni-2Al (237 HV) and the surface hardness (207 HV) of Ni-coated key. In contact wear, the higher the hardness of the alloys, the lower the wear rate. The relationship between hardness and wear rate is inversely linear behavior. A quantification analysis of the chemical composition of the wires used for 3D printing used Energy-dispersive X-ray spectroscopy (EDS) for the analysis. The standard deviation for the Ni in Cu-11Ni test is less than 0.2 %. Finally, the melting extrusion simulation of high temperature melt Cu alloy is conducted with 0.4 ~ 0.2 mm nozzle size. The required 4 forces against the frictions coming from the tube wall and the nozzle were considered. The simulation results resolve the flowing behavior of high viscous glass and melt Cu-alloy in Al2O3 nozzle through smaller nozzles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:46:46Z (GMT). No. of bitstreams: 1 ntu-107-R04527017-1.pdf: 12681145 bytes, checksum: 03841dd1f8337271fa55b384eb043f05 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 圖目錄 V 表目錄 XVII 符號表 XX 縮寫 XXI 第一章 緒論 1 1.1 研究目標 2 第二章 文獻回顧 5 2.1 積層製造簡介 5 2.2 利用EDS做全定量分析 6 2.2.1 X光能量散布分析(Energy-dispersive X-ray Spectroscopy) 6 2.2.2 全定量分析之技術 7 2.3 黏流體的擠出方程式 8 2.3.1 反向壓力 8 2.3.2 正向壓力 11 2.4 金屬和玻璃的黏度 11 第三章 實驗步驟 24 3.1 實驗材料 24 3.2 銅合金材料之硬度分析 24 3.2.1 熱處理 24 3.2.2 晶相分析 24 3.2.3 硬度測試 25 3.2.4 微結構觀察 25 3.2.5 密度量測 26 3.3 全定量分析 26 3.4 合金磨耗之測試 27 3.5 黏流體的擠出模擬 27 3.5.1 流體的製備 27 3.5.2 流體的黏度測試 28 3.5.3 液體流速的量測及計算各個壓降差 29 3.5.4 表面粗糙度之量測 30 第四章 結果與討論 40 4.1 硬度及熱處理 40 4.1.1 微硬度之量測 40 4.1.2 奈米硬度 41 4.2 磨耗性質 57 4.2.1 測試參數之影響 57 4.2.2 銅合金線材之磨耗率 57 4.2.3 硬度最佳化之樣品的磨耗 58 4.3 成分分析 67 4.3.1 操作參數的選取 67 4.3.2 全定量分析之結果 69 4.4 黏流體的擠出模擬 82 4.4.1 實驗裝置之校正 82 4.4.2 氧化鋁噴嘴縮口造成影響 84 4.4.3 高黏滯性流體行為 85 第五章 結論 110 附錄I 銅基合金材料之高溫氧化行為 113 I.1 溫度在熔點以下之氧化行為 113 I.2 熔湯之氧化測試 114 附錄II 高溫金屬擠出 136 II.1 擠出觀察及改善 136 II.2 溫度的控制 137 II.3 氣氛的控制 138 文獻 153 | |
| dc.language.iso | zh-TW | |
| dc.subject | 全定量分析 | zh_TW |
| dc.subject | EDS | zh_TW |
| dc.subject | 硬度 | zh_TW |
| dc.subject | 磨耗率 | zh_TW |
| dc.subject | 線材 | zh_TW |
| dc.subject | 模擬 | zh_TW |
| dc.subject | 銅合金 | zh_TW |
| dc.subject | wire | en |
| dc.subject | simulation | en |
| dc.subject | Quantitative analysis | en |
| dc.subject | EDS | en |
| dc.subject | hardness | en |
| dc.subject | wear rate | en |
| dc.subject | Cu-alloy | en |
| dc.title | 3D列印銅基合金之材料性質分析與擠出模擬 | zh_TW |
| dc.title | Analysis of Material Properties of Copper-Based Alloy by 3D Printing and Modelling of Melt-Extrusion (ME) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 連雙喜(Shuang-Shii Lian),薛承輝(Chun-Hway Hsueh),王安邦(An-Bang Wang),王聖璋(Sheng-Chang Wang) | |
| dc.subject.keyword | 銅合金,線材,磨耗率,硬度,EDS,全定量分析,模擬, | zh_TW |
| dc.subject.keyword | Cu-alloy,wire,wear rate,hardness,EDS,Quantitative analysis,simulation, | en |
| dc.relation.page | 163 | |
| dc.identifier.doi | 10.6342/NTU201802080 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 12.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
