請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | |
| dc.contributor.author | Wan-Jhen Chu | en |
| dc.contributor.author | 儲皖貞 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:39:23Z | - |
| dc.date.available | 2021-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-07 | |
| dc.identifier.citation | 許曉雙; 張福生; 秦雪梅, 三萜皂苷生物合成途徑及關鍵酶的研究進展. 世界科學技術: 中醫藥現代化 2014, 2440-2448.
李典鵬; 張厚瑞, 廣西特產植物羅漢果的研究與應用. 廣西植物 2000, 20, 270-276. 羅祖良; 張凱倫; 馬小軍; 郭玉華, 三萜皂苷的合成生物學研究進展. 中草藥 2016, 47, 1806-1814. 趙雲生; 萬德光; 陳新; 李占林; 田洪嶺, 五環三萜皂苷生物合成與調控的研究進展. 中草藥 2009, 327-330. Anderson, A.; Stier, T., Anaerobic nutrition of Saccharomyces cerevisiae. J. Cell. Comp. Physiol 1954, 43, 271-281. Arendt, P.; Miettinen, K.; Pollier, J.; De Rycke, R.; Callewaert, N.; Goossens, A., An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic engineering 2017, 40, 165-175. Basson, M. E.; Thorsness, M.; Rine, J., Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proceedings of the National Academy of Sciences 1986, 83, 5563-5567. Brachmann, C. B.; Davies, A.; Cost, G. J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J. D., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast-Chichester 1998, 14, 115-132. Buckholz, R. G.; Gleeson, M. A., Yeast systems for the commercial production of heterologous proteins. Nature Biotechnology 1991, 9, 1067. Chaturvedula, V. S. P.; Prakash, I., Cucurbitane glycosides from Siraitia grosvenorii. Journal of Carbohydrate Chemistry 2011, 30, 16-26. Chiu, C.-H.; Wang, R.; Lee, C.-C.; Lo, Y.-C.; Lu, T.-J., Biotransformation of Mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 2013, 61, 7127-7134. Crowley, J. H.; Leak, F. W.; Shianna, K. V.; Tove, S.; Parks, L. W., A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae. Journal of bacteriology 1998, 180, 4177-4183. Dai, L.; Liu, C.; Zhu, Y.; Zhang, J.; Men, Y.; Zeng, Y.; Sun, Y., Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii. Plant and Cell Physiology 2015, 56, 1172-1182. Dai, Z.; Liu, Y.; Zhang, X.; Shi, M.; Wang, B.; Wang, D.; Huang, L.; Zhang, X., Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabolic engineering 2013, 20, 146-156. Dai, Z.; Liu, Y.; Zhang, X.; Shi, M.; Wang, B.; Wang, D.; Huang, L.; Zhang, X., Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabolic engineering 2013, 20, 146-156. Dai, Z.; Wang, B.; Liu, Y.; Shi, M.; Wang, D.; Zhang, X.; Liu, T.; Huang, L.; Zhang, X., Producing aglycons of ginsenosides in bakers' yeast. Scientific reports 2014, 4, 3698. David, M., Absence of nutritional requirement for unsaturated fatty acids by brewer's yeast in malt wort. Journal of the Institute of Brewing 1974, 80, 80-81. Davies, B. S.; Wang, H. S.; Rine, J., Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Molecular and cellular biology 2005, 25, 7375-7385. Donald, K.; Hampton, R. Y.; Fritz, I. B., Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Applied and environmental microbiology 1997, 63, 3341-3344. Field, R. B.; Holmlund, C. E., Isolation of 2, 3; 22, 23-dioxidosqualene and 24, 25-oxidolanosterol from yeast. Archives of biochemistry and biophysics 1977, 180, 465-471. Fukushima, E. O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T., CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant and Cell Physiology 2011, 52, 2050-2061. Gachotte, D.; Sen, S.; Eckstein, J.; Barbuch, R.; Krieger, M.; Ray, B.; Bard, M., Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. Proceedings of the National Academy of Sciences 1999, 96, 12655-12660. Germann, M.; Gallo, C.; Donahue, T.; Shirzadi, R.; Stukey, J.; Lang, S.; Ruckenstuhl, C.; Oliaro-Bosso, S.; McDonough, V.; Turnowsky, F., Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. Journal of Biological Chemistry 2005, 280, 35904-35913. Gollub, E. G.; Liu, K.; Dayan, J.; Adlersberg, M.; Sprinson, D., Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2, 3-oxidosqualene. Journal of Biological Chemistry 1977, 252, 2846-2854. Gueldener, U.; Heinisch, J.; Koehler, G.; Voss, D.; Hegemann, J., A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic acids research 2002, 30, e23-e23. Han, J.-Y.; Kim, H.-J.; Kwon, Y.-S.; Choi, Y.-E., The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant and cell physiology 2011, 52, 2062-2073. Hu, Z.; He, B.; Ma, L.; Sun, Y.; Niu, Y.; Zeng, B., Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian journal of microbiology 2017, 57, 270-277. Itkin, M.; Davidovich-Rikanati, R.; Cohen, S.; Portnoy, V.; Doron-Faigenboim, A.; Oren, E.; Freilich, S.; Tzuri, G.; Baranes, N.; Shen, S., The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proceedings of the National Academy of Sciences 2016, 113, E7619-E7628. Jackson, B. E.; Hart-Wells, E. A.; Matsuda, S. P., Metabolic engineering to produce sesquiterpenes in yeast. Organic letters 2003, 5, 1629-1632. Janke, C.; Magiera, M. M.; Rathfelder, N.; Taxis, C.; Reber, S.; Maekawa, H.; Moreno‐Borchart, A.; Doenges, G.; Schwob, E.; Schiebel, E., A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004, 21, 947-962. Kirby, J.; Romanini, D. W.; Paradise, E. M.; Keasling, J. D., Engineering triterpene production in Saccharomyces cerevisiae–β‐amyrin synthase from Artemisia annua. The FEBS journal 2008, 275, 1852-1859. Knop, M.; Siegers, K.; Pereira, G.; Zachariae, W.; Winsor, B.; Nasmyth, K.; Schiebel, E., Epitope tagging of yeast genes using a PCR‐based strategy: more tags and improved practical routines. Yeast 1999, 15, 963-972. Kötter, P.; Weigand, J. E.; Meyer, B.; Entian, K.-D.; Suess, B., A fast and efficient translational control system for conditional expression of yeast genes. Nucleic acids research 2009, 37, e120-e120. Kushiro, T.; Shibuya, M.; Ebizuka, Y., β‐Amyrin synthase. The FEBS Journal 1998, 256, 238-244. Leber, R.; Zenz, R.; Schröttner, K.; Fuchsbichler, S.; Pühringer, B.; Turnowsky, F., A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae. The FEBS Journal 2001, 268, 914-924. Lee, M.-H.; Jeong, J.-H.; Seo, J.-W.; Shin, C.-G.; Kim, Y.-S.; In, J.-G.; Yang, D.-C.; Yi, J.-S.; Choi, Y.-E., Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant and Cell Physiology 2004, 45, 976-984. Lewis, T.; Keesler, G.; Fenner, G.; Parks, L., Pleiotropic mutations in Saccharomyces cerevisiae affecting sterol uptake and metabolism. Yeast 1988, 4, 93-106. Lewis, T.; Taylor, F.; Parks, L., Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae. Journal of bacteriology 1985, 163, 199-207. Li, D.; Ikeda, T.; Huang, Y.; Liu, J.; Nohara, T.; Sakamoto, T.; Nonaka, G.-I., Seasonal variation of mogrosides in Lo Han Kuo (Siraitia grosvenori) fruits. Journal of Natural Medicines 2007, 61, 307-312. Li, J.; Wang, C., Advances of taxol combinatorial biosynthesis. Sheng wu gong cheng xue bao= Chinese journal of biotechnology 2014, 30, 355-367. Longley, R.; Dennis, R.; Heyer, M.; Wren, J., Selective Saccharomyces media containing ergosterol and tween 80. Journal of the Institute of Brewing 1978, 84, 341-345. Lorenz, R. T.; Parks, L. W., Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae. Lipids 1991, 26, 598-603. Ma, S. M.; Garcia, D. E.; Redding-Johanson, A. M.; Friedland, G. D.; Chan, R.; Batth, T. S.; Haliburton, J. R.; Chivian, D.; Keasling, J. D.; Petzold, C. J., Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metabolic engineering 2011, 13, 588-597. Madsen, K. M.; Udatha, G. D.; Semba, S.; Otero, J. M.; Koetter, P.; Nielsen, J.; Ebizuka, Y.; Kushiro, T.; Panagiotou, G., Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 2011, 6, e14763. Milla, P.; Athenstaedt, K.; Viola, F.; Oliaro-Bosso, S.; Kohlwein, S. D.; Daum, G.; Balliano, G., Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. Journal of Biological Chemistry 2002, 277, 2406-2412. Misawa, N., Pathway engineering for functional isoprenoids. Current opinion in biotechnology 2011, 22, 627-633. Mo, C.; Milla, P.; Athenstaedt, K.; Ott, R.; Balliano, G.; Daum, G.; Bard, M., In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2003, 1633, 68-74. Murata, Y.; Yoshikawa, S.; Suzuki, Y. A.; Sugiura, M.; Inui, H.; Nakano, Y., Sweetness characteristics of the triterpene glycosides in Siraitia grosvenori. Journal of the Japanese Society for Food Science and Technology (Japan) 2006. Nelson, J.; Steckbeck, S.; Spencer, T., Biosynthesis of 24, 25-epoxycholesterol from squalene 2, 3; 22, 23-dioxide. Journal of Biological Chemistry 1981, 256, 1067-1068. Nicolaou, K.; Yang, Z.; Liu, J.; Ueno, H.; Nantermet, P.; Guy, R.; Claiborne, C.; Renaud, J.; Couladouros, E.; Paulvannan, K., Total synthesis of taxol. Nature 1994, 367, 630. Niu, Y.; Luo, H.; Sun, C.; Yang, T.-J.; Dong, L.; Huang, L.; Chen, S., Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 2014, 533, 295-303. Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.; Tai, A.; Main, A.; Eng, D., High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528. Phillips, D. R.; Rasbery, J. M.; Bartel, B.; Matsuda, S. P., Biosynthetic diversity in plant triterpene cyclization. Current opinion in plant biology 2006, 9, 305-314. Polakowski, T.; Stahl, U.; Lang, C., Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Applied microbiology and biotechnology 1998, 49, 66-71. Prakash, I.; Chaturvedula, V. S. P., Additional new minor cucurbitane glycosides from Siraitia grosvenorii. Molecules 2014, 19, 3669-3680. Shan, H.; Segura, M. J.; Wilson, W. K.; Lodeiro, S.; Matsuda, S. P., Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes. Journal of the American Chemical Society 2005, 127, 18008-18009. Sikorski, R. S.; Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122, 19-27. South, P. F.; Harmeyer, K. M.; Serratore, N. D.; Briggs, S. D., H3K4 methyltransferase Set1 is involved in maintenance of ergosterol homeostasis and resistance to Brefeldin A. Proceedings of the National Academy of Sciences 2013, 110, E1016-E1025. Takemoto, T.; Arihara, S.; Nakajima, T.; Okuhira, M., Studies on the constituents of Fructus Momordicae. III. Structure of mogrosides. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan 1983, 103, 1167-1173. Tang, Q.; Ma, X.; Mo, C.; Wilson, I. W.; Song, C.; Zhao, H.; Yang, Y.; Fu, W.; Qiu, D., An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC genomics 2011, 12, 343. Veen, M.; Stahl, U.; Lang, C., Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS yeast research 2003, 4, 87-95. Vinokur, J. M.; Cummins, M. C.; Korman, T. P.; Bowie, J. U., An adaptation to life in acid through a novel mevalonate pathway. Scientific reports 2016, 6, 39737. Wilcox, L. J.; Balderes, D. A.; Wharton, B.; Tinkelenberg, A. H.; Rao, G.; Sturley, S. L., Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. Journal of Biological Chemistry 2002, 277, 32466-32472. Wright, R.; Basson, M.; D'Ari, L.; Rine, J., Increased amounts of HMG-CoA reductase induce' karmellae': a proliferation of stacked membrane pairs surrounding the yeast nucleus. The Journal of Cell Biology 1988, 107, 101-114. Xia, Y.; Rivero-Huguet, M. E.; Hughes, B. H.; Marshall, W. D., Isolation of the sweet components from Siraitia grosvenorii. Food Chemistry 2008, 107, 1022-1028. Zhang, H.; Shibuya, M.; Yokota, S.; Ebizuka, Y., Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biological and Pharmaceutical Bulletin 2003, 26, 642-650. Zhang, J.; Dai, L.; Yang, J.; Liu, C.; Men, Y.; Zeng, Y.; Cai, Y.; Zhu, Y.; Sun, Y., Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant and Cell Physiology 2016, 57, 1000-1007. Zhang, K.; Tong, M.; Gao, K.; Di, Y.; Wang, P.; Zhang, C.; Wu, X.; Zheng, D., Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. Journal of industrial microbiology & biotechnology 2015, 42, 207-218. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70811 | - |
| dc.description.abstract | 三萜皂苷(triterpenoid saponins)是植物的次級代謝物之一。在植物中佔有的比例較低、結構複雜,且不易從植物中進行萃取或以化學合成,因此許多研究以生物合成方式產生三萜皂苷。三萜皂苷的結構由皂苷元(aglycon)及糖基以醣苷鍵鍵結組成,總類繁多,羅漢果皂苷(mogrosides)是一種從羅漢果(Siraitia grosvenirii)果實中分離出來的四環三萜皂苷(tetracyclic triterpene saponins)。三萜皂苷的生合成路徑前端為甲羥戊酸途徑(Mevalonate pathway),此路徑為所有真核細胞生成固醇或三萜化合物均須具備的路徑,因此希望藉由基因工程來改良Saccharomyces cerevisiae原生的麥角固醇(ergosterol)生成路徑,建構出可生合成三萜皂苷的菌株。首先,我們嘗試置換特定基因(HMG1、ERG1、ERG9)的啟動子來調節三萜皂苷非環狀前驅物合成相關的蛋白表現。實驗結果顯示置換HMG1、ERG1的啟動子確實能使細胞內的squalene累積,相較於WT上升了約12倍,且以點試驗證實啟動子置換不會影響到細胞生長,但在該階段的所有菌株中均未看到2,3-oxidosqualene、2,3,22,23-dioxidosqualene累積。推測可能是因為lanosterol synthase活性太強,將整個代謝路徑快速帶往生成麥角固醇。因此後續實驗會建構ERG27基因剔除及upc2-1突變株來阻礙麥角固醇生成路徑,希望最後能如期看到2,3-oxidosqualene、2,3,22,23-dioxidosqualene累積。此實驗產生的菌株亦可做為未來三萜皂苷生成的基本平台。 | zh_TW |
| dc.description.abstract | Triterpenoid saponins are a type of secondary metabolites in plants. Due to the structure complexity and low levels of triterpenoid saponins in plants, it’s difficult extract or synthesize chemically. Recently, biosynthesis of triterpenoid saponins has been applied using biotechnology engineering in microbes. The complexity of triterpenoid saponins depend on the variation of lipophilic aglycon structure and the position and number of glycosides combining to the aglycon. Mogrosides are tetracyclic triterpenoid saponins isolated from the fruits of Siraitia grosvenirii. The biosynthetic pathway of mogrosides is derived from mevalonate pathway presenting in all eukaryotic cells to synthesize sterols or triterpene compounds. The goal of this study is to modify Saccharomyces cerevisiae ergosterol pathway by genetic engineering and to construct the strains that have ability to synthesize triterpenoid saponins. Firstly, the replacement of promoters of HMG1, ERG1 and ERG9 was opted to mediate protein expression related to triterpenoid saponin noncyclic precursors’ synthetic pathway. The data showed that HMG1 and ERG1 promoter replacement would accumulated the amounts of squalene, up to 12-fold increase compared to those in WT. No significant effect on cell growth of the genetic engineered strains. However, the accumulation of 2,3-oxidosqualene or 2,3,22,23-dioxidosqualene could not be observed in all genetic engineered strains. This may be due to that the activity of lanosterol synthase was intense, and lead to the synthesis of lanosterol and ergosteorl, but not the accumulation of 2,3-oxidosqualene or 2,3,22,23-dioxidosqualene. Currently, attempts to establish erg27 knockout and upc2-1 mutant strains may block the metabolic flux to ergosterol pathway. The established platform could possibly promote the biosynthesis of triterpenoids in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:39:23Z (GMT). No. of bitstreams: 1 ntu-107-R05641015-1.pdf: 3726546 bytes, checksum: 919702f0731d0347217e96a70f1b7708 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 壹、 前言 1
貳、 文獻回顧 2 第一節、 植物的三萜皂苷(triterpenoid saponins)合成途徑 2 一、 甲羥戊酸途徑(Mevalonate pathway, MVA pathway) 2 二、 皂苷元骨架生成 4 三、 皂苷之修飾 4 第二節、 酵母菌的三萜皂苷合成 6 一、 酵母菌的麥角固醇(ergosterol)合成路徑 6 第三節、 羅漢果 7 一、 羅漢果皂苷(Mogorsides) 7 二、 皂苷萃取與純化 8 三、 羅漢果皂苷合成路徑與麥角固醇合成路徑 10 第四節、 提高酵母菌三萜皂苷前驅物含量之方法 13 一、 調控特定基因表現 13 1. HMG1 13 2. ERG9 14 3. ERG1 14 二、 減少麥角固醇合成 15 1. ERG27基因剔除 15 2. UPC2點突變 16 參、 研究目的與實驗架構 17 肆、 材料與方法 18 第一節、 實驗材料 18 一、 化學藥品 18 二、 標準品 18 三、 菌株 19 四、 質體 21 五、 培養材料 22 第二節、 儀器設備 22 一、 一般儀器設備 22 二、 應用軟體 23 第三節、 實驗方法 24 一、 菌株特定基因之啟動子(promoter)置換 24 二、 蛋白表現 28 三、 點試驗(spotting assay) 29 四、 upc2-1突變株 29 五、 ERG27基因剔除 32 六、 非皂化脂質代謝物分析 33 伍、 結果 35 第一節、 特定基因之啟動子置換 35 一、 HMG1 36 1. 菌株建構 36 2. 蛋白表現與菌株生長狀況 38 二、 ERG1、ERG9 40 1. 菌株建構 40 2. 蛋白表現與菌株生長狀況 42 三、 HMG1+ERG1 44 1. 菌株建構 44 2. 蛋白表現與菌株生長狀況 46 四、 loxP-Cre調控的篩選基因kanMX4剔除 48 五、 HMG1+ERG1+ERG9 52 1. 菌珠建構 52 2. 蛋白表現與菌株生長狀況 54 第二節、 基因工程對酵母菌生成非皂化脂質代謝物的影響 56 一、 非皂化脂質的定性與定量 56 二、 非皂化脂質標準品之檢量線 58 三、 啟動子置換菌株的非皂化脂質代謝物分析 59 陸、 討論 62 柒、 結論與展望 66 捌、 參考文獻 67 玖、 附錄 75 APPENDIX 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 固醇代謝突變株 | zh_TW |
| dc.subject | 三?皂? | zh_TW |
| dc.subject | 啟動子置換 | zh_TW |
| dc.subject | Saccharomyces cerevisiae | zh_TW |
| dc.subject | triterpenoid saponins | en |
| dc.subject | Saccharomyce cerevisiae | en |
| dc.subject | sterol auxotroph | en |
| dc.subject | promoter replacement | en |
| dc.title | 以酵母菌基因工程增加三萜皂苷前驅物 | zh_TW |
| dc.title | Increase the precursors of triterpenoid saponins in the genetic engineered yeast | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂廷璋,陳勁初,王如邦,謝淑貞,陳宏彰 | |
| dc.subject.keyword | 三?皂?,啟動子置換,固醇代謝突變株,Saccharomyces cerevisiae, | zh_TW |
| dc.subject.keyword | triterpenoid saponins,promoter replacement,sterol auxotroph,Saccharomyce cerevisiae, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201802664 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
