Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan- Kai Ho)
dc.contributor.authorYi-Ju Chiangen
dc.contributor.author江宜儒zh_TW
dc.date.accessioned2021-06-17T04:35:31Z-
dc.date.available2023-08-15
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-08-09
dc.identifier.citationBaldi, G., Texeira, M., Murray, F., & Jobbagy, E. G. (2016). Vegetation Productivity in Natural vs. Cultivated Systems along Water Availability Gradients in the Dry Subtropics. Plos One, 11(12). doi:ARTN e016816810.1371/journal.pone.0168168
Barbet-Massin, M., & Jetz, W. (2015). The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios. Glob Chang Biol, 21(8), 2917-2928. doi:10.1111/gcb.12905
Barros, M. F., Pinho, B. X., Leao, T., & Tabarelli, M. (2018). Soil attributes structure plant assemblages across an Atlantic forest mosaic. Journal of Plant Ecology, 11(4), 613-622. doi:10.1093/jpe/rtx037
Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48.
Botta-Dukat, Z. (2005). Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16(5), 533-540. doi:Doi 10.1658/1100-9233(2005)16[533:Rqeaam]2.0.Co;2
Concepción, E. D., Götzenberger, L., Nobis, M. P., de Bello, F., Obrist, M. K., & Moretti, M. (2017). Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography, 40(6), 753-763. doi:10.1111/ecog.02121
Diaz, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646-655. doi:Doi 10.1016/S0169-5347(01)02283-2
Diaz, S., Cabido, M., & Casanoves, F. (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9(1), 113-122. doi:Doi 10.2307/3237229
Diaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K., & Robson, M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20684-20689. doi:10.1073/pnas.0704716104
Flynn, D. F., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., . . . DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett, 12(1), 22-33. doi:10.1111/j.1461-0248.2008.01255.x
Garcia-Morales, R., Moreno, C. E., Badano, E. I., Zuria, I., Galindo-Gonzalez, J., Rojas-Martinez, A. E., & Avila-Gomez, E. S. (2016). Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes. Plos One, 11(12). doi:ARTN e016676510.1371/journal.pone.0166765
Hijmans, R. J. (2016). raster: Geographic Data Analysis and Modeling (Version 2.5-8). Retrieved from https://CRAN.R-project.org/package=raster
Houston, W. A. (2013). Breeding cues in a wetland-dependent Australian passerine of the seasonally wet-dry tropics. Austral Ecology, 38(6), 617-626. doi:doi:10.1111/aec.12007
Kalinowska, K., & Ejsmont-Karabin, J. (2012). Functional Diversity, Trophic Relations and Nutrient Cycling in Psammon Community of an Eutrophic Lake Preface. Polish Journal of Ecology, 60(3), 439-441.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: Tests in Linear Mixed Effects Models. (Version 2.0-33). Retrieved from https://CRAN.R-project.org/package=lmerTest
Laliberte, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. doi:Doi 10.1890/08-2244.1
Laliberte, E., Legendre, P., and B. Shipley. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. (Version 1.0-12).
Meynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., & Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do alpha, beta and gamma components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography, 20(6), 893-903. doi:10.1111/j.1466-8238.2010.00647.x
Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867-876. doi:10.1111/j.1365-2435.2010.01695.x
Pörtner, H.-O., Bennett, A. F., Bozinovic, F., Clarke, A., Lardies, M. A., Lucassen, M., . . . Stillman, J. H. (2006). Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiological and biochemical zoology, 79(2), 295-313.
Petchey, O. L., Evans, K. L., Fishburn, I. S., & Gaston, K. J. (2007). Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol, 76(5), 977-985. doi:10.1111/j.1365-2656.2007.01271.x
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Reymond, A., Purcell, J., Cherix, D., Guisan, A., & Pellissier, L. (2013). Functional diversity decreases with temperature in high elevation ant fauna. Ecological Entomology, 38(4), 364-373. doi:10.1111/een.12027
Sandvig, E. M., Coulson, T., Kikkawa, J., & Clegg, S. M. (2017). The influence of climatic variation and density on the survival of an insular passerine Zosterops lateralis. Plos One, 12(4). doi:ARTN e017636010.1371/journal.pone.0176360
Tanaka, T., & Sato, T. (2015). Taxonomic, phylogenetic and functional diversities of ferns and lycophytes along an elevational gradient depend on taxonomic scales. Plant Ecology, 216(12), 1597-1609. doi:10.1007/s11258-015-0543-z
Villalba, R., Grau, H. R., Boninsegna, J. A., Jacoby, G. C., & Ripalta, A. (1998). Tree-ring evidence for long-term precipitation changes in subtropical South America. International Journal of Climatology, 18(13), 1463-1478. doi:Doi 10.1002/(Sici)1097-0088(19981115)18:13<1463::Aid-Joc324>3.0.Co;2-A
Villeger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. doi:Doi 10.1890/07-1206.1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70704-
dc.description.abstract功能多樣性描述群聚中性狀的多樣性,能夠詮釋一個地區生態系統功能。功能多樣性包括至少四個層面:功能相異度、功能分散度、功能豐富度、功能均勻度。目前已知功能多樣性在溫帶地區會受氣候和植物生產力的影響,但副熱帶地區仍缺乏相關研究,且較少有研究同時探討不同層面的功能多樣性。我們透過檢驗兩個假說來探討副熱帶地區環境梯度與不同層面功能多樣性的關係。第一,環境過濾假說:較高的溫度、較豐沛的降雨量、較低的降雨量變異係數(對功能性狀較不嚴苛的過濾條件)會導致較高的功能多樣性;第二,資源可得性假說:較高的植物生產力(較多的資源支持)會導致較高的功能多樣性。我們根據台灣繁殖鳥類大調查和五種重要的鳥類功能性狀,計算四個層面的功能多樣性指標。接著使用線性混合效應模型探討環境梯度(溫度、降雨量和植物生產力)與功能多樣性的關係。分析結果基本上支持兩個假說:較不嚴苛的環境條件和較多的資源支持增加了功能相異度、功能分散度與功能豐富度。本研究顯示台灣的氣候和植物生產力會影響功能多樣性,與溫帶地區的研究結果一致。然而在台灣,功能豐富度和溫度之間呈現二次曲線的關係,不同於溫帶地區的線性關係,代表相較於溫帶地區,氣候暖化更可能會降低副熱帶地區的功能豐富度。本研究也顯示不同層面的功能多樣性隨環境梯度變化的異同,並強調探討溫帶和副熱帶地區功能多樣性差異的重要性。zh_TW
dc.description.abstractFunctional diversity (FD), the diversity of functionally disparate traits in a community, critically influences ecosystem functioning. FD is a multifaceted concept that includes several key aspects: functional dissimilarity, functional dispersion, functional richness, and functional evenness. While FD was reportedly affected by climate and vegetation productivity in temperate regions, the effects remain to be investigated in the subtropics and different aspects of FD are rarely studied within one community. To help fill the knowledge gaps, we examined how environmental factors (i.e., climate and vegetation productivity) affect different aspects of functional diversity in the subtropics by testing the two hypotheses: 1) Environmental filtering: higher temperature, higher precipitation, and lower CV (coefficient of variation) of precipitation (less harsh environments for functional traits) will lead to higher FD, and 2) Resource availability: higher productivity (a higher resource supplement) will lead to higher FD. Specifically, we calculated the four FD aspects of bird communities in subtropical Taiwan based on the Taiwan Breeding Bird Survey (BBS Taiwan) data (2009 – 2015) and five important bird functional traits. We then investigated the FD pattern along environmental gradients (temperature, precipitation, and vegetation productivity), using linear mixed-effects models. The results generally supported both hypotheses: less harsh environments and higher amount of resources generally led to higher functional diversity (higher functional dissimilarity, dispersion and richness). Although these patterns agreed with those in temperate regions, the subtropical communities in this study showed a quadratic functional richness – temperature relationship, different from the linear functional richness – temperature relationship in temperate regions. This suggests that warming may reduce functional richness more likely in the subtropics than temperate regions. The results also showed that the four functional diversity indices may express different patterns along environmental gradients, suggesting various underlying mechanisms and highlighting a need to consider different indices in functional diversity studies. Based on the results, we urge a more holistic investigation to understand the similarity and difference in functional diversity between temperate and subtropical regions.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:35:31Z (GMT). No. of bitstreams: 1
ntu-107-R05b44008-1.pdf: 2973713 bytes, checksum: 21bb953b0c0643b7d24964fd6b00e0d2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
Content vi
Content of tables vii
Content of figures viii
Introduction 1
Materials and Methods (schematic diagram in Figure 2.) 6
Breeding bird survey data 6
Bird functional traits 7
Functional diversity indices 8
Environmental variable data 9
Statistical analysis 10
Results 12
Functional dissimilarity (RaoQ) 12
Functional dispersion (FDis) 12
Functional richness (FRic) 13
Functional evenness (FEve) 14
Discussion 15
Summary 15
The quadratic pattern of FRic and temperature in the subtropics 16
Comparison between RaoQ and FDis 17
Potential underlying mechanisms of each FD aspect 18
Potential caveats 19
Conclusions 21
References 22
Appendix 47
A. Schematic diagram for functional space and each FD index. 47
B. The scatter plot of species richness and temperature. 53
C. Human disturbance effect. 54
dc.language.isoen
dc.subject資源可得性zh_TW
dc.subject環境過濾zh_TW
dc.subject功能多樣性zh_TW
dc.subjectfunctional diversityen
dc.subjectenvironmental filteringen
dc.subjectresource availabilityen
dc.title不同層面的鳥類功能多樣性與環境梯度的關係zh_TW
dc.titleDifferent aspects of functional diversity of bird communities along environmental gradients in subtropical Taiwanen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee端木茂甯(Mao-Ning Tuanmu),許皓捷,澤大衛(David Zeleny)
dc.subject.keyword功能多樣性,環境過濾,資源可得性,zh_TW
dc.subject.keywordfunctional diversity,environmental filtering,resource availability,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201802850
dc.rights.note有償授權
dc.date.accepted2018-08-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved