請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁俞文(Yu-Wen Ting) | |
| dc.contributor.author | Chien-Chih Huang | en |
| dc.contributor.author | 黃建智 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:34:08Z | - |
| dc.date.available | 2023-08-13 | |
| dc.date.copyright | 2018-08-13 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | 1. Yang, J.; Martinson, T. E.; Liu, R. H., Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry 2009, 116 (1), 332-339.
2. Wang, J.; Mujumdar, A. S.; Mu, W.; Feng, J.; Zhang, X.; Zhang, Q.; Fang, X.-M.; Gao, Z.-J.; Xiao, H.-W., Grape Drying: Current Status and Future Trends. In Grape and Wine Biotechnology, InTech: 2016. 3. Adiletta, G.; Russo, P.; Senadeera, W.; Di Matteo, M., Drying characteristics and quality of grape under physical pretreatment. Journal of Food Engineering 2016, 172, 9-18. 4. Orsat, V.; Changrue, V.; Raghavan, V., Microwave drying of fruits and vegetables. 2006; Vol. 2, p 1-7. 5. Sakif, A. S.; Saikat, N.; Eamin, M., Drying and Dehydration Technologies: A Compact Review on Advance Food Science. Journal of Mechanical and Industrial Engineering Research 2018, 7 (1), 1-10. 6. Koyuncu, T.; Tosun, İ.; Pınar, Y., Drying characteristics and heat energy requirement of cornelian cherry fruits (Cornus mas L.). Journal of Food Engineering 2007, 78 (2), 735-739. 7. Kumar, C.; Karim, M. A.; Joardder, M. U. H., Intermittent drying of food products: A critical review. Journal of Food Engineering 2014, 121, 48-57. 8. Moses, J. A.; Norton, T.; Alagusundaram, K.; Brijesh kumar, T., Novel Drying Techniques for the Food Industry. 2014; Vol. 6. 9. Ochoa, M. R.; Kesseler, A. G.; Pirone, B. N.; Márquez, C. A.; De Michelis, A., Shrinkage During Convective Drying of Whole Rose Hip (Rosa Rubiginosa L.) Fruits. LWT - Food Science and Technology 2002, 35 (5), 400-406. 10. Xiao, H.-W.; Bai, J.-W.; Xie, L.; Sun, D.-W.; Gao, Z.-J., Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food and Bioproducts Processing 2015, 94, 581-591. 11. Erbay, Z.; Icier, F., A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition 2010, 50 (5), 441-464. 12. Pangavhane, D. R.; Sawhney, R. L., Review of research and development work on solar dryers for grape drying. Energy Conversion and Management 2002, 43 (1), 45-61. 13. Jairaj, K. S.; Singh, S. P.; Srikant, K., A review of solar dryers developed for grape drying. Solar Energy 2009, 83 (9), 1698-1712. 14. Maskan, M., Microwave/air and microwave finish drying of banana. Journal of Food Engineering 2000, 44 (2), 71-78. 15. Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y., Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition 2017, 57 (6), 1239-1255. 16. Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K., Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry 2012, 132 (1), 51-59. 17. Mujumdar, A. S., Drying Technology in Agriculture and Food Science. Drying Technology 2001, 19 (6), 1217-1218. 18. Huang, L.-l.; Zhang, M.; Wang, L.-p.; Mujumdar, A. S.; Sun, D.-f., Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT - Food Science and Technology 2012, 47 (1), 183-188. 19. Grabowski, S.; Marcotte, M.; Poirier, M.; Kudra, T., Drying Characteristics of Osmotically Pretreated Cranberries - Energy and Quality Aspects. Drying Technology 2002, 20 (10), 1989-2004. 20. Yu, K.-C.; Chen, C.-C.; Wu, P.-C., Research on application and rehydration rate of vacuum freeze drying of rice. Journal of Applied Sciences 2011, 11 (3), 535-541. 21. Orsat, V.; Raghavan, G. S. V.; Krishnaswamy, K., 5 - Microwave technology for food processing: An overview of current and future applications. In The Microwave Processing of Foods (Second Edition), Regier, M.; Knoerzer, K.; Schubert, H., Eds. Woodhead Publishing: 2017; pp 100-116. 22. Vadivambal, R.; Jayas, D. S., Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review. Food and Bioprocess Technology 2010, 3 (2), 161-171. 23. Wray, D.; Ramaswamy, H. S., Novel Concepts in Microwave Drying of Foods. Drying Technology 2015, 33 (7), 769-783. 24. Zhang, K.; Pu, Y.-Y.; Sun, D.-W., A Brief Review: Effects of Different Drying Methods on Quality Changes of Fruits. Biosystems and Food Engineering Research Review 21 2016, 80. 25. Roustapour, O. R.; Hosseinalipour, M.; Ghobadian, B.; Mohaghegh, F.; Azad, N. M., A proposed numerical–experimental method for drying kinetics in a spray dryer. Journal of Food Engineering 2009, 90 (1), 20-26. 26. Verma, A.; Singh, S. V., Spray Drying of Fruit and Vegetable Juices—A Review. Critical Reviews in Food Science and Nutrition 2015, 55 (5), 701-719. 27. Tonon, R. V.; Baroni, A. F.; Brabet, C.; Gibert, O.; Pallet, D.; Hubinger, M. D., Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering 2009, 94 (3), 215-221. 28. Fang, Z.; Bhandari, B., Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry 2011, 129 (3), 1139-1147. 29. Chin, S. T.; Nazimah, S. A. H.; Quek, S. Y.; Che Man, Y. B.; Abdul Rahman, R.; Mat Hashim, D., Changes of volatiles' attribute in durian pulp during freeze- and spray-drying process. LWT - Food Science and Technology 2008, 41 (10), 1899-1905. 30. Rastogi, N. K.; Raghavarao, K. S. M. S.; Niranjan, K.; Knorr, D., Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science & Technology 2002, 13 (2), 48-59. 31. Shukla, B. D.; Singh, S. P., Osmo-convective drying of cauliflower, mushroom and greenpea. Journal of Food Engineering 2007, 80 (2), 741-747. 32. Tonon, R. V.; Baroni, A. F.; Hubinger, M. D., Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering 2007, 82 (4), 509-517. 33. van Nieuwenhuijzen, N. H.; Zareifard, M. R.; Ramaswamy, H. S., OSMOTIC DRYING KINETICS OF CYLINDRICAL APPLE SLICES OF DIFFERENT SIZES. Drying Technology 2001, 19 (3-4), 525-545. 34. Raghavan, G.; Rennie, T.; Sunjka, P.; Orsat, V.; Phaphuangwittayakul, W.; Terdtoon, P., Overview of new techniques for drying biological materials with emphasis on energy aspects. Brazilian Journal of Chemical Engineering 2005, 22 (2), 195-201. 35. Moses, J. A.; Karthickumar, P.; Sinija, V.; Alagusundaram, K.; Tiwari, B.; Cruz, C.; Macam, F.; Maglinao, F.; Montiflor, M. L.; Reyes, R., Effect of microwave treatment on drying characteristics and quality parameters of thin layer drying of coconut. Asian J Food Agro Ind 2013, 6 (02), 72-85. 36. Chong, C. H.; Figiel, A.; Law, C. L.; Wojdyło, A., Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques. Food and Bioprocess Technology 2014, 7 (4), 975-989. 37. Yuan, Y.; Tan, L.; Xu, Y.; Yuan, Y.; Dong, J., Optimization of Combined Drying for Lettuce Using Response Surface Methodology. Journal of Food Processing and Preservation 2016, 40 (5), 1027-1037. 38. Mujumdar, A. S.; Huang, L. X., Global R&D Needs in Drying. Drying Technology 2007, 25 (4), 647-658. 39. Xiao, H.-W.; Pang, C.-L.; Wang, L.-H.; Bai, J.-W.; Yang, W.-X.; Gao, Z.-J., Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering 2010, 105 (2), 233-240. 40. Doymaz, İ., Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering 2006, 76 (2), 212-217. 41. Lokhande, S., Effect of drying on grape raisin quality parameters. 2016; Vol. 2, p 86-95. 42. Sharma, A.; G Adsule, P., Raisin Production in India. 2007. 43. Sharma, A.; Jogaiah, S.; Somkuwar, R., Raisin quality: the deciding factors. 2013. 44. Basunia, M. A.; Abe, T., Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering 2001, 47 (4), 295-301. 45. Esmaiili, M.; Sotudeh-Gharebagh, R.; Cronin, K.; Mousavi, M. A. E.; Rezazadeh, G., Grape Drying: A Review. Food Reviews International 2007, 23 (3), 257-280. 46. Vasilopoulou, E.; Trichopoulou, A., Greek raisins: A traditional nutritious delicacy. Journal of Berry Research 2014, 4 (3), 117-125. 47. Ertekin, C.; Yaldiz, O., Drying of eggplant and selection of a suitable thin layer drying model. 2004; Vol. 63, p 349-359. 48. Nindo, C. I.; Sun, T.; Wang, S. W.; Tang, J.; Powers, J. R., Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT - Food Science and Technology 2003, 36 (5), 507-516. 49. Beaudry, C.; Raghavan, G. S. V.; Ratti, C.; Rennie, T. J., Effect of Four Drying Methods on the Quality of Osmotically Dehydrated Cranberries. Drying Technology 2004, 22 (3), 521-539. 50. Beaudry, C.; Raghavan, G. S. V.; Rennie, T. J., Microwave Finish Drying of Osmotically Dehydrated Cranberries. Drying Technology 2003, 21 (9), 1797-1810. 51. Tütüncü, M. A.; Labuza, T. P., Effect of geometry on the effective moisture transfer diffusion coefficient. Journal of Food Engineering 1996, 30 (3), 433-447. 52. Labuza, T. P.; Hyman, C. R., Moisture migration and control in multi-domain foods. Trends in Food Science & Technology 1998, 9 (2), 47-55. 53. Mahmutoğlu, T.; Emír, F.; Saygi, Y. B., Sun/solar drying of differently treated grapes and storage stability of dried grapes. Journal of Food Engineering 1996, 29 (3), 289-300. 54. Bai, J.-W.; Sun, D.-W.; Xiao, H.-W.; Mujumdar, A. S.; Gao, Z.-J., Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies 2013, 20, 230-237. 55. Kök, D.; Çelik, S., Determination of characteristics of grape berry skin in some table grape cultivars (V. vinifera L.). Journal of Agronomy 2004, 3 (2), 141-146. 56. Carranza-Concha, J.; Benlloch, M.; Camacho, M. M.; Martínez-Navarrete, N., Effects of drying and pretreatment on the nutritional and functional quality of raisins. Food and Bioproducts Processing 2012, 90 (2), 243-248. 57. Saravacos, G. D.; Marousis, S. N.; Raouzeos, G. S., Effect of ethyl oleate on the rate of air-drying of foods. Journal of Food Engineering 1988, 7 (4), 263-270. 58. Femenia, A.; Sánchez, E.; Simal, S.; Rosselló, C., Effects of drying pretreatments on the cell wall composition of grape tissues. Journal of Agricultural and Food Chemistry 1998, 46 (1), 271-276. 59. Carranza‐Concha, J.; Del Mar Camacho, M.; Martinez‐Navarrete, N., Effects of blanching on grapes (Vitis vinifera) and changes during storage in syrup. Journal of Food Processing and Preservation 2012, 36 (1), 11-20. 60. Petrucci, V.; Canata, N.; Bolin, H. R.; Fuller, G.; Stafford, A. E., Use of oleic acid derivatives to accelerate drying of thompson seedless grapes. Journal of the American Oil Chemists Society 1974, 51 (3), 77-80. 61. Tulasidas, T.; Raghavan, G.; Norris, E., Effects of Dipping and Washing Pre-treatments on Microwave Drying of Grapes. Journal of Food Process Engineering 1996, 19 (1), 15-24. 62. Salengke, S.; Sastry, S. K., Effect of Ohmic Pretreatment on the Drying Rate of Grapes and Adsorption Isotherm of Raisins. Drying Technology 2005, 23 (3), 551-564. 63. Esmaiili, M.; Sotudeh-Gharebagh, R.; Mousavi, M. A. E.; Rezazadeh, G., Influence of dipping on thin-layer drying characteristics of seedless grapes. Biosystems Engineering 2007, 98 (4), 411-421. 64. Di Matteo, M.; Cinquanta, L.; Galiero, G.; Crescitelli, S., Effect of a novel physical pretreatment process on the drying kinetics of seedless grapes. Journal of Food Engineering 2000, 46 (2), 83-89. 65. Adiletta, G.; Senadeera, W.; Liguori, L.; Crescitelli, A.; Albanese, D.; Russo, P., The influence of abrasive pretreatment on hot air drying of grape. Food and Nutrition Sciences 2015, 6, 355-364. 66. Senadeera, W.; Adilettta, G.; Di Matteo, M.; Russo, P. In Drying kinetics, quality changes and shrinkage of two grape varieties of Italy, Applied Mechanics and materials, Trans Tech Publ: 2014; pp 362-366. 67. Kostaropoulos, A.; Saravacos, G., Microwave Pre‐treatment for Sun‐Dried Raisins. Journal of Food Science 1995, 60 (2), 344-347. 68. Dai, C.; Zhou, X.; Zhang, S.; Zhou, N., Influence of ultrasound-assisted nucleation on freeze-drying of carrots. Drying Technology 2016, 34 (10), 1196-1203. 69. Won, Y.-C.; Min, S. C.; Lee, D.-U., Accelerated Drying and Improved Color Properties of Red Pepper by Pretreatment of Pulsed Electric Fields. Drying Technology 2015, 33 (8), 926-932. 70. Dev, S. R. S.; Padmini, T.; Adedeji, A.; Gariépy, Y.; Raghavan, G. S. V., A Comparative Study on the Effect of Chemical, Microwave, and Pulsed Electric Pretreatments on Convective Drying and Quality of Raisins. Drying Technology 2008, 26 (10), 1238-1243. 71. Surowsky, B.; Schlüter, O.; Knorr, D., Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Engineering Reviews 2015, 7 (2), 82-108. 72. Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J., Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances 2015, 33 (6, Part 2), 1108-1119. 73. Pankaj, S. K.; Keener, K. M., Cold plasma: background, applications and current trends. Current Opinion in Food Science 2017, 16, 49-52. 74. Front Matter. In Cold Plasma in Food and Agriculture, Academic Press: San Diego, 2016; pp i-ii. 75. Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P., Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 2006, 61 (1), 2-30. 76. Thirumdas, R.; Sarangapani, C.; Annapure, U. S., Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophysics 2015, 10 (1), 1-11. 77. Mir, S. A.; Shah, M. A.; Mir, M. M., Understanding the Role of Plasma Technology in Food Industry. Food and Bioprocess Technology 2016, 9 (5), 734-750. 78. Coutinho, N. M.; Silveira, M. R.; Rocha, R. S.; Moraes, J.; Ferreira, M. V. S.; Pimentel, T. C.; Freitas, M. Q.; Silva, M. C.; Raices, R. S. L.; Ranadheera, C. S.; Borges, F. O.; Mathias, S. P.; Fernandes, F. A. N.; Rodrigues, S.; Cruz, A. G., Cold plasma processing of milk and dairy products. Trends in Food Science & Technology 2018, 74, 56-68. 79. Pankaj, S.; Wan, Z.; Keener, K., Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7 (1), 4. 80. Misra, N. N.; Pankaj, S. K.; Segat, A.; Ishikawa, K., Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology 2016, 55, 39-47. 81. Weltmann, K. D.; Brandenburg, R.; von Woedtke, T.; Ehlbeck, J.; Foest, R.; Stieber, M.; Kindel, E., Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). Journal of Physics D: Applied Physics 2008, 41 (19), 194008. 82. Scholtz, V.; Julák, J.; Kříha, V., The Microbicidal Effect of Low‐Temperature Plasma Generated by Corona Discharge: Comparison of Various Microorganisms on an Agar Surface or in Aqueous Suspension. Plasma Processes and Polymers 2010, 7 (3‐4), 237-243. 83. Moreau, M.; Orange, N.; Feuilloley, M. G. J., Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnology Advances 2008, 26 (6), 610-617. 84. Zhang, H.; Ma, D.; Qiu, R.; Tang, Y.; Du, C., Non-thermal plasma technology for organic contaminated soil remediation: A review. Chemical Engineering Journal 2017, 313, 157-170. 85. Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; Von Woedtke, T.; Brandenburg, R.; Von dem Hagen, T.; Weltmann, K., Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics 2010, 44 (1), 013002. 86. Phan, K. T. K.; Phan, H. T.; Brennan, C. S.; Phimolsiripol, Y., Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: an overview. International Journal of Food Science & Technology 2017. 87. Segat, A.; Misra, N. N.; Cullen, P. J.; Innocente, N., Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing 2016, 98, 181-188. 88. Laroussi, M., Low temperature plasma‐based sterilization: overview and state‐of‐the‐art. Plasma processes and polymers 2005, 2 (5), 391-400. 89. Surowsky, B.; Fröhling, A.; Gottschalk, N.; Schlüter, O.; Knorr, D., Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International Journal of Food Microbiology 2014, 174, 63-71. 90. Misra, N. N.; Jo, C., Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 2017, 64, 74-86. 91. Noriega, E.; Shama, G.; Laca, A.; Díaz, M.; Kong, M. G., Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology 2011, 28 (7), 1293-1300. 92. Korachi, M.; Ozen, F.; Aslan, N.; Vannini, L.; Guerzoni, M. E.; Gottardi, D.; Ekinci, F. Y., Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. International Dairy Journal 2015, 42, 64-69. 93. Ziuzina, D.; Patil, S.; Cullen, P.; Keener, K.; Bourke, P., Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. Journal of applied microbiology 2013, 114 (3), 778-787. 94. Song, A. Y.; Oh, Y. A.; Roh, S. H.; Kim, J. H.; Min, S. C., Cold oxygen plasma treatments for the improvement of the physicochemical and biodegradable properties of polylactic acid films for food packaging. Journal of food science 2016, 81 (1). 95. Chen, H. H.; Chen, Y. K.; Chang, H. C., Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry 2012, 135 (1), 74-79. 96. Dobrynin, D.; Fridman, G.; Friedman, G.; Fridman, A., Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics 2009, 11 (11), 115020. 97. Sarangapani, C.; O'Toole, G.; Cullen, P. J.; Bourke, P., Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 2017, 44, 235-241. 98. Meinlschmidt, P.; Ueberham, E.; Lehmann, J.; Reineke, K.; Schlüter, O.; Schweiggert-Weisz, U.; Eisner, P., The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science & Emerging Technologies 2016, 38, 374-383. 99. Contini, C.; Katsikogianni, M. G.; O’Neill, F. T.; O’Sullivan, M.; Boland, F.; Dowling, D. P.; Monahan, F. J., Storage Stability of an Antioxidant Active Packaging Coated with Citrus Extract Following a Plasma Jet Pretreatment. Food and Bioprocess Technology 2014, 7 (8), 2228-2240. 100. Pankaj, S. K.; Bueno-Ferrer, C.; Misra, N. N.; Milosavljević, V.; O'Donnell, C. P.; Bourke, P.; Keener, K. M.; Cullen, P. J., Applications of cold plasma technology in food packaging. Trends in Food Science & Technology 2014, 35 (1), 5-17. 101. Oh, Y. A.; Roh, S. H.; Min, S. C., Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids 2016, 58, 150-159. 102. Heise, M.; Neff, W.; Franken, O.; Muranyi, P.; Wunderlich, J., Sterilization of Polymer Foils with Dielectric Barrier Discharges at Atmospheric Pressure. Plasmas and Polymers 2004, 9 (1), 23-33. 103. Chan, C. M.; Ko, T. M.; Hiraoka, H., Polymer surface modification by plasmas and photons. Surface Science Reports 1996, 24 (1), 1-54. 104. Sarangapani, C.; Yamuna Devi, R.; Thirumdas, R.; Trimukhe, A. M.; Deshmukh, R. R.; Annapure, U. S., Physico-chemical properties of low-pressure plasma treated black gram. LWT - Food Science and Technology 2017, 79, 102-110. 105. Randeniya, L. K.; de Groot, G. J., Non‐Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Processes and Polymers 2015, 12 (7), 608-623. 106. Nguyen, V. T.; Ueng, J. P.; Tsai, G. J., Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). Journal of food science 2011, 76 (7). 107. Thakur, A. K.; Saharan, V. K.; Gupta, R. K., Drying of ‘Perlette’ grape under different physical treatment for raisin making. Journal of Food Science and Technology 2010, 47 (6), 626-631. 108. Pangavhane, D. R.; Sawhney, R. L.; Sarsavadia, P. N., Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. Journal of Food Engineering 1999, 39 (2), 211-216. 109. Kassem, A. S.; Shokr, A. Z.; El-Mahdy, A. R.; Aboukarima, A. M.; Hamed, E. Y., Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences 2011, 10 (1), 33-40. 110. Vázquez, G.; Chenlo, F.; Moreira, R.; Cruz, E., Grape Drying in a Pilot Plant With a Heat Pump. 1997; Vol. 15, p 899-920. 111. Karadeniz, F.; Durst, R. W.; Wrolstad, R. E., Polyphenolic composition of raisins. Journal of Agricultural and Food Chemistry 2000, 48 (11), 5343-5350. 112. Misra, N. N.; Patil, S.; Moiseev, T.; Bourke, P.; Mosnier, J. P.; Keener, K. M.; Cullen, P. J., In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering 2014, 125, 131-138. 113. Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P., Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology 2015, 107, 55-65. 114. Xu, L.; Garner, A. L.; Tao, B.; Keener, K. M., Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food and Bioprocess Technology 2017, 10 (10), 1778-1791. 115. Lacombe, A.; Niemira, B. A.; Gurtler, J. B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H., Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology 2015, 46, 479-484. 116. Thirumdas, R.; Deshmukh, R. R.; Annapure, U. S., Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innovative Food Science & Emerging Technologies 2015, 31, 83-90. 117. Yong, H. I.; Lee, H.; Park, S.; Park, J.; Choe, W.; Jung, S.; Jo, C., Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties. Meat Science 2017, 123, 151-156. 118. Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P., Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 2016, 33, 225-233. 119. Ziuzina, D.; Misra, N. N.; Cullen, P. J.; Keener, K. M.; Mosnier, J. P.; Vilaró, I.; Gaston, E.; Bourke, P., Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. 2016, 6 (3-4), 397-412. 120. Pankaj, S. K.; Wan, Z.; Colonna, W.; Keener, K. M., Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture 2017, 97 (12), 4016-4021. 121. Grzegorzewski, F.; Ehlbeck, J.; Schlüter, O.; Kroh, L. W.; Rohn, S., Treating lamb’s lettuce with a cold plasma – Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT - Food Science and Technology 2011, 44 (10), 2285-2289. 122. Ramazzina, I.; Tappi, S.; Rocculi, P.; Sacchetti, G.; Berardinelli, A.; Marseglia, A.; Rizzi, F., Effect of Cold Plasma Treatment on the Functional Properties of Fresh-Cut Apples. Journal of Agricultural and Food Chemistry 2016, 64 (42), 8010-8018. 123. Rodríguez, Ó.; Gomes, W. F.; Rodrigues, S.; Fernandes, F. A. N., Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT 2017, 84, 457-463. 124. CoSTA, E.; CoSME, F.; Jordão, A. M.; Mendes-Faia, A., Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. OENO One 2014, 48 (1), 51-62. 125. Bennett, L. E.; Jegasothy, H.; Konczak, I.; Frank, D.; Sudharmarajan, S.; Clingeleffer, P. R., Total polyphenolics and anti-oxidant properties of selected dried fruits and relationships to drying conditions. Journal of Functional Foods 2011, 3 (2), 115-124. 126. Sanz, M. L.; del Castillo, M. D.; Corzo, N.; Olano, A., Formation of Amadori compounds in dehydrated fruits. Journal of Agricultural and Food Chemistry 2001, 49 (11), 5228-5231. 127. Sério, S.; Rivero-Pérez, M. D.; Correia, A. C.; Jordão, A. M.; González-San José, M. L., Analysis of commercial grape raisins: phenolic content, antioxidant capacity and radical scavenger activity. Ciência e Técnica Vitivinícola 2014, 29 (1), 1-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70662 | - |
| dc.description.abstract | 葡萄乾因其良好的風味和豐富的營養價值而成為受歡迎的點心,也常被用在其他食品之中。乾燥葡萄來生產葡萄乾是一個非常緩慢且耗能的過程,主要是因為葡萄表皮含有蠟質層結構作為去除水分的屏障,因此難以將水分從葡萄中去除。為了除去蠟質層並縮短乾燥時間,在乾燥之前大多數的葡萄都會經過浸泡化學藥劑的預處理,破壞或溶解葡萄表皮的蠟質層。但是,化學藥劑的使用可能會導致在最終產品中具有殘餘物質。
常壓電漿是一種新興的非熱食品加工技術。電漿屬於電離狀態的中性氣體,由大量不同的物質組成,如電子,正離子和負離子,自由基和氣體原子等。這些活性粒子具有相當大的能量能夠和目標產生碰撞,並且對目標的表面產生快速的化學反應和蝕刻作用。 本研究的目的是透過常壓電漿作為葡萄乾燥的預處理,改變葡萄表面蠟質結構的化學性質來縮短乾燥所需的時間,並與未處理、化學浸泡處理與剝皮處理的組別比較,觀察在70 ℃下進行乾燥,葡萄的乾燥速率和葡萄乾質量參數(如外觀顏色、質地、總酚含量、抗氧化活性)的變化。 研究的結果表明,常壓電漿是一種有效的乾燥預處理方法,能夠在葡萄表面造成蝕刻作用,形成微裂縫進而破壞表皮蠟質層的保護,可有效的縮短15 % - 20 % 的乾燥時間,且隨著電漿處理次數的增加以及處理距離的減少,所得到的效果越佳,尤其是距離1公分處理3次的條件,能與化學浸泡處理得到類似的效果。而且電漿處理也能維持如外觀顏色、質地和抗氧化活性等較高的產品質量,同時也能夠保留相對高的總酚含量。此研究表示,常壓電漿能夠發展成為一種新型的乾燥預處理技術,不僅可以縮短乾燥所需的時間,還能夠保持產品品質,並且對環境友善,將來可以應用於其他含有熱敏感因子或功能性成分食品的乾燥預處理。 | zh_TW |
| dc.description.abstract | Raisins are popular snack due to its abundant flavor and high content of bioactive component. Drying of grapes is a rather slow and energy intensive process since grape contains a waxy peel structure, which serves as a barrier to moisture removal. In order to remove the waxy layer and shorten drying time, several chemical pretreatments have been suggested. However, chemical treatment may lead to the presence of toxic residual in the end product. Atmospheric plasma technology is an emerging non-thermal food processing technology. Plasma is the fourth state of matter, which is an ionized gas composed of various active particles, such as electrons, positive and negative ions, free radicals and neutral molecules. These active particles have great energy that react quickly with the target, on which the surface would be rapidly etched and stripped. Presently, plasma has been gradually applied in the food processing, mostly focuses on the role of disinfection and sterilization with highly reactive gases. To better utilize the benefit of plasma technology, the application of plasma in food processing should be extended to other area such as food drying. The purpose of this study was to study the effect of atmospheric plasma as a pretreatment method on the chemical properties of waxy grapes, as well as the drying rate and nutritional quality of the grapes. The chemical and physical changes on waxy surface of the grape were studied by analytical methods and scanning electron microscopy (SEM). In specific, the effect of plasma pretreatment on the drying rate and other quality parameters including color, texture and phenolic content were determined and compared with raisins that were made after chemical pretreatment, peel removed, or intact. The result from this study showed that atmospheric plasma is an effective drying pretreatment that 15%-20% of the drying time was reduced as a result of the formation of micro-fissures on the surface. For plasma pretreated samples, their microstructure and quality parameter were significantly changed when compared to the chemical pretreatment and untreated control samples. In summary, the atmospheric plasma was successfully developed into a novel pretreatment technology that could be used as a reference for application to other products that contain heat-sensitive functional ingredients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:34:08Z (GMT). No. of bitstreams: 1 ntu-107-R04628205-1.pdf: 5512102 bytes, checksum: bdbcff9050484fa41b7855b8cf30fce4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 x 第一章、 前言 1 第二章、 文獻回顧 3 第一節、葡萄 3 第二節、 乾燥 5 一、 乾燥概述 5 二、 乾燥方法 6 第三節、 葡萄乾生產 12 第四節、 葡萄乾燥預處理 16 第五節、 電漿 19 一、 電漿概述 19 二、 電漿形成 21 三、 常壓電漿的分類 23 四、 電漿於食品產業之應用 27 五、 電漿的表面改質作用 31 第三章、 材料與方法 34 第一節、實驗目的 34 第二節、實驗架構 34 第三節、實驗材料 35 第四節、實驗方法 36 一、 預處理 (Pretreatment) 36 二、 水分含量變化與乾燥曲線 39 三、 水活性 39 四、 水滴接觸角 39 五、 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 40 六、 葡萄乾樣品顏色測定 40 七、 葡萄乾樣品質地測定 40 八、 總酚含量測定 41 九、 抗氧化活性測定 41 十、 統計分析與圖表繪製 42 第四章、 結果討論 43 一、 乾燥速率 43 二、 水滴接觸角 46 三、 掃描式電子顯微鏡 49 四、 葡萄乾顏色 51 五、 葡萄乾質地 53 六、 葡萄乾總酚含量 55 七、 葡萄乾抗氧化活性 57 第五章、 結論 59 第六章、 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 預處理 | zh_TW |
| dc.subject | 常壓電漿 | zh_TW |
| dc.subject | 葡萄乾 | zh_TW |
| dc.subject | raisin | en |
| dc.subject | atmospheric plasma | en |
| dc.subject | pretreatment | en |
| dc.title | 常壓電漿預處理對葡萄乾燥速率及葡萄乾品質之影響 | zh_TW |
| dc.title | Effect of atmospheric plasma pretreatment on the drying rate of grape and the quality of raisin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞碧(James Swi-Bea Wu),沈賜川(Szu-Chuan Shen),鄭光成(Kuan-Chen Cheng),劉志宏(Chi-Hung Liu) | |
| dc.subject.keyword | 常壓電漿,葡萄乾,預處理, | zh_TW |
| dc.subject.keyword | atmospheric plasma,raisin,pretreatment, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201802929 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
