Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70613
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦龍(Chin-Lung Kuo)
dc.contributor.authorMing-Yang Changen
dc.contributor.author張明揚zh_TW
dc.date.accessioned2021-06-17T04:32:35Z-
dc.date.available2023-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citationReference
1. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 2011, 21 (27), 9938-9954.
2. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
3. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
4. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews 2009, 38 (9), 2565-2575.
5. Scrosati, B.; Hassoun, J.; Sun, Y.-K., Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4 (9), 3287-3295.
6. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science 2011, 4 (1), 56-72.
7. Liu, C.; Neale, Z. G.; Cao, G., Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today 2016, 19 (2), 109-123.
8. Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H., First-principles study of alkali metal-graphite intercalation compounds. Journal of Power Sources 2013, 243, 585-587.
9. Okamoto, Y., Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. The Journal of Physical Chemistry C 2013, 118 (1), 16-19.
10. Guo, Y. G.; Hu, J. S.; Wan, L. J., Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials 2008, 20 (15), 2878-2887.
11. Wu, X. L.; Guo, Y. G.; Wan, L. J., Rational design of anode materials based on group IVA elements (Si, Ge, and Sn) for lithium‐ion batteries. Chemistry–An Asian Journal 2013, 8 (9), 1948-1958.
12. Li, W.; Sun, X.; Yu, Y., Si‐, Ge‐, Sn‐Based Anode Materials for Lithium‐Ion Batteries: From Structure Design to Electrochemical Performance. Small Methods 2017, 1 (3), 1600037.
13. Boukamp, B.; Lesh, G.; Huggins, R., All‐solid lithium electrodes with mixed‐conductor matrix. Journal of the Electrochemical Society 1981, 128 (4), 725-729.
14. Graetz, J.; Ahn, C.; Yazami, R.; Fultz, B., Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. Journal of The Electrochemical Society 2004, 151 (5), A698-A702.
15. Sharma, R. A.; Seefurth, R. N., Thermodynamic properties of the Lithium‐Silicon system. Journal of The Electrochemical Society 1976, 123 (12), 1763-1768.
16. Nitta, N.; Yushin, G., High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles. Particle & Particle Systems Characterization 2014, 31 (3), 317-336.
17. McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y., 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries. Advanced Materials 2013, 25 (36), 4966-4985.
18. Chou, C.-Y.; Kim, H.; Hwang, G. S., A comparative first-principles study of the structure, energetics, and properties of Li–M (M= Si, Ge, Sn) Alloys. The Journal of Physical Chemistry C 2011, 115 (40), 20018-20026.
19. Chan, M. K.; Wolverton, C.; Greeley, J. P., First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. Journal of the American Chemical Society 2012, 134 (35), 14362-14374.
20. Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., Tough germanium nanoparticles under electrochemical cycling. Acs Nano 2013, 7 (4), 3427-3433.
21. Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia 2003, 51 (4), 1103-1113.
22. Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y., Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano letters 2011, 11 (9), 3991-3997.
23. Lim, L. Y.; Liu, N.; Cui, Y.; Toney, M. F., Understanding phase transformation in crystalline Ge anodes for Li-ion batteries. Chemistry of Materials 2014, 26 (12), 3739-3746.
24. Gu, M.; Wang, Z.; Connell, J. G.; Perea, D. E.; Lauhon, L. J.; Gao, F.; Wang, C., Electronic Origin for the Phase Transition from Amorphous Li x Si to Crystalline Li15Si4. ACS nano 2013, 7 (7), 6303-6309.
25. Silberstein, K. E.; Lowe, M. A.; Richards, B.; Gao, J.; Hanrath, T.; Abruña, H. c. D., Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries. Langmuir 2015, 31 (6), 2028-2035.
26. Yen, Y.-C.; Chao, S.-C.; Wu, H.-C.; Wu, N.-L., Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. Journal of The Electrochemical Society 2009, 156 (2), A95-A102.
27. Nadimpalli, S. P.; Sethuraman, V. A.; Dalavi, S.; Lucht, B.; Chon, M. J.; Shenoy, V. B.; Guduru, P. R., Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. Journal of Power Sources 2012, 215, 145-151.
28. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218.
29. Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A., The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS. Langmuir 1999, 15 (8), 2947-2960.
30. Ganesh, P.; Kent, P.; Jiang, D.-e., Solid–electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes: Insights from first-principles molecular dynamics. The Journal of Physical Chemistry C 2012, 116 (46), 24476-24481.
31. Nguyen, C. C.; Song, S.-W., Characterization of SEI layer formed on high performance Si–Cu anode in ionic liquid battery electrolyte. Electrochemistry Communications 2010, 12 (11), 1593-1595.
32. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
33. Tian, H.; Xin, F.; Wang, X.; He, W.; Han, W., High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. Journal of Materiomics 2015, 1 (3), 153-169.
34. Graetz, J.; Ahn, C.; Yazami, R.; Fultz, B., Highly reversible lithium storage in nanostructured silicon. Electrochemical and Solid-State Letters 2003, 6 (9), A194-A197.
35. Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano letters 2011, 11 (8), 3312-3318.
36. Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J., Nest‐like silicon nanospheres for high‐capacity lithium storage. Advanced Materials 2007, 19 (22), 4067-4070.
37. Song, T.; Xia, J.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano letters 2010, 10 (5), 1710-1716.
38. Sangster, J.; Pelton, A., The Ge-Li (germanium-lithium) system. Journal of phase equilibria 1997, 18 (3), 289-294.
39. Fuller, C.; Severiens, J., Mobility of impurity ions in germanium and silicon. Physical Review 1954, 96 (1), 21.
40. Conwell, E. M., Properties of silicon and germanium. Proceedings of the IRE 1952, 40 (11), 1327-1337.
41. Abel, P. R.; Chockla, A. M.; Lin, Y.-M.; Holmberg, V. C.; Harris, J. T.; Korgel, B. A.; Heller, A.; Mullins, C. B., Nanostructured Si (1-x) Ge x for Tunable Thin Film Lithium-Ion Battery Anodes. Acs Nano 2013, 7 (3), 2249-2257.
42. Lim, L. Y.; Fan, S.; Hng, H. H.; Toney, M. F., Storage capacity and cycling stability in Ge anodes: relationship of anode structure and cycling rate. Advanced Energy Materials 2015, 5 (15).
43. Wu, S.; Han, C.; Iocozzia, J.; Lu, M.; Ge, R.; Xu, R.; Lin, Z., Germanium‐based nanomaterials for rechargeable batteries. Angewandte Chemie International Edition 2016, 55 (28), 7898-7922.
44. Liu, X. H.; Liu, Y.; Kushima, A.; Zhang, S.; Zhu, T.; Li, J.; Huang, J. Y., In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Advanced Energy Materials 2012, 2 (7), 722-741.
45. Chan, M. K.; Long, B. R.; Gewirth, A. A.; Greeley, J. P., The first-cycle electrochemical lithiation of crystalline Ge: Dopant and orientation dependence and comparison with Si. The Journal of Physical Chemistry Letters 2011, 2 (24), 3092-3095.
46. Chou, C.-Y.; Hwang, G. S., On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study. Applied Surface Science 2014, 323, 78-81.
47. Olesinski, R.; Abbaschian, G., The Ge− Si (germanium-silicon) system. Bulletin of Alloy Phase Diagrams 1984, 5 (2), 180-183.
48. Ge, M.; Kim, S.; Nie, A.; Shahbazian-Yassar, R.; Mecklenburg, M.; Lu, Y.; Fang, X.; Shen, C.; Rong, J.; Park, S. Y., Capacity retention behavior and morphology evolution of SixGe1− x nanoparticles as lithium-ion battery anode. Nanotechnology 2015, 26 (25), 255702.
49. Duveau, D.; Fraisse, B.; Cunin, F. d. r.; Monconduit, L., Synergistic Effects of Ge and Si on the Performances and Mechanism of the Ge x Si1–x Electrodes for Li Ion Batteries. Chemistry of Materials 2015, 27 (9), 3226-3233.
50. Born, M.; Oppenheimer, R., Zur Quantentheorie der Molekeln. Annalen der Physik 1927, 389 (20), 457-484.
51. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871.
52. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), A1133-A1138.
53. Thomas, L. H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 23 (05), 542.
54. Dirac, P. A. M., Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 26 (03), 376.
55. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 1980, 58 (8), 1200-1211.
56. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 1992, 46 (11), 6671-6687.
57. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-17979.
58. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758-1775.
59. Car, R.; Parrinello, M., Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 1985, 55 (22), 2471-2474.
60. Verlet, L., Computer 'Experiments' on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review 1967, 159 (1), 98-103.
61. Swope, W. C., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of chemical physics 1982, 76 (1), 637.
62. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics 1984, 81 (1), 511.
63. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A 1985, 31 (3), 1695-1697.
64. Okamoto, H., Li-Si (Lithium-Silicon). Journal of Phase Equilibria and Diffusion 2009, 30 (1), 118-119.
65. Lugt, W. v. d.; Alblas, B. P., in Handbook of Thermodynamic and Transport Properties of Alkali Metals, edited by R. W. Ohse. 1985, Chap. 5.1.
66. Kulkarni, R. V.; Aulbur, W. G.; Stroud, D., Ab initio molecular-dynamics study of the structural and transport propertiesof liquid germanium. Physical Review B 1997, 55 (11), 6896-6903.
67. Štich, I.; Car, R.; Parrinello, M., Structural, bonding, dynamical, and electronic properties of liquid silicon: Anab initiomolecular-dynamics study. Physical Review B 1991, 44 (9), 4262-4274.
68. Kresse, G.; Hafner, J., Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251-14269.
69. Khoo, K.; Chan, T.-L.; Kim, M.; Chelikowsky, J. R., Ab initio molecular dynamics simulations of molten Al 1− x Si x alloys. Physical Review B 2011, 84 (21), 214203.
70. Wang, S.; Wang, C.; Chuang, F.-C.; Morris, J. R.; Ho, K., Ab initio molecular dynamics simulation of liquid Al 88 Si 12 alloys. The Journal of chemical physics 2005, 122 (3), 034508.
71. Xu, R.; van der Lugt, W., The electrical resistivities of liquid Li-Ge alloys. Physica B: Condensed Matter 1991, 173 (4), 435-438.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70613-
dc.description.abstract本論文運用第一原理計算與分子動力學模擬探討液態及非晶相鋰矽鍺合金在不同成分下的動力學及結構等性質。其中LixSi0.5Ge0.5的成分主要介於x=0.45~4.81,藉由適當的熔化與焠火之程序產生液態及非晶相結構,並與鋰矽、鋰鍺系統進行比較。此篇論文主要分兩部分:
在第一部分的研究主要針對液態鋰矽鍺合金相關性質進行分析,而我們的結果顯示:在鋰矽鍺系統中,其擴散係數隨鋰濃度的變化與鋰矽及鋰鍺系統有相當大的不同。在鋰矽鍺(LixSi0.5Ge0.5)系統中,我們發現在鋰濃度達x=2.23時,有較強的鋰矽、鋰鍺作用力導致較低的擴散係數。另外,與LixSi及LixGe系統的比較中,我們發現,在鋰濃度0.45 < x < 2.23之間,鋰矽鍺的擴散係數較鋰矽及鋰鍺來得高,在鋰濃度x > 2.23時,三個系統間的擴散係數差異並不大。此外在結構性質的分析中,不僅驗證了動力學的結果,我們額外發現到了在鋰濃度x > 2.23時,矽、鍺原子隨著溫度上升而會有聚集的現象,而我們認為此現象主要源自於鋰矽、鋰鍺有較強的作用力。我們最後計算了液態鋰矽鍺合金的電子性質,並與鋰矽、鋰鍺系統相比,發現其導電度主要介於鋰矽、鋰鍺系統之間。
在本研究的第二個部分,則針對各濃度非晶相鋰矽鍺合金進行結構與電子性質分析,各部分皆顯示出與液態時有相似的特徵。此外我們也進行了晶體非晶相化現象的模擬,並發現期間的壓力及介面的反應速率,矽鍺合金主要介於矽、鍺之間。
總結以上的結果,雖然在電性,介面反應速率,非晶相化時的壓力,矽鍺合金皆介於純矽以及純鍺,然而在動力學上卻顯示出與鋰矽、鋰鍺相當不同的變化,我們發現在鋰濃度0.45 < x < 2.23之間,鋰矽鍺合金甚至有優於鋰矽及鋰鍺的動力學行為。
zh_TW
dc.description.abstractIn this thesis, the first atomic calculation and molecular dynamics simulation are used to investigate the kinetics and structure of liquid and amorphous LixSi0.5Ge0.5 alloys in different compositions. The composition of LixSi0.5Ge0.5 is between x=0.45~4.81, and the liquid and amorphous phase structures are generated by appropriate melting and quenching procedures, and compared with LixSi and LixGe systems. This paper is mainly divided into two parts:
The first part of the study focused on the analysis of the properties of liquid LixSi0.5Ge0.5 alloys, and our results show that the diffusivity varies with lithium concentration and is quite different from LixSi and LixGe systems. In the LixSi0.5Ge0.5 system, we found the lowest diffusivity at x = 2.23 due to stronger Li-Si and Li-Ge interaction. Comparing the three systems, it can be found that the diffusivity in LixSi0.5Ge0.5 is higher than that of LixSi and LixGe at a lithium concentration of 0.45 < x < 2.23. However, there is not much difference in diffusivity among the three systems at x > 2.23. In addition, in the analysis of structural properties, we found that at high lithium concentrations, Si and Ge atoms will aggregate as the temperature rises, and we believe that this phenomenon is mainly due to the strong interactions of Li-Si and Li-Ge. Finally, the electronic properties of the LixSi0.5Ge0.5 alloy were calculated. Compared with the LixGe and LixSi systems, the conductivity lies between the LixSi and LixGe systems.
In the second part of the study, the structural and electronic properties of the amorphous phase LixSi0.5Ge0.5 alloys were analyzed. Each part shows similar characteristics to those in liquid. In addition, we perform the amorphization of crystal. We have found out that the stress during amorphization and rate of interfacial reaction is between those of Si and Ge.
In summary, although the electrical, interfacial reaction rate, and the stress during amorphization in Si0.5Ge0.5 are between those of Si and Ge, LixSi0.5Ge0.5 exhibit quite different characteristics from LixSi and LixGe. We found that LixSi0.5Ge0.5 have higher Li diffusivity than that of LixSi and LixGe at 0.45 < x < 2.23.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:32:35Z (GMT). No. of bitstreams: 1
ntu-107-R05527059-1.pdf: 6551983 bytes, checksum: 987f3ea1e116b37bec74bd2bab6829df (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究背景 鋰電池發展 1
1.2 IV-A族負極鋰離子電池 1
1.2.1 矽基負極系統 2
1.2.2 鍺基負極系統 2
1.2.3 矽鍺合金及矽鍺複合材料 3
1.3 研究動機和目標 4
第二章 理論基礎 10
2.1 波恩-歐本海默近似法50 10
2.2 密度泛函理論51-52 10
2.2.1 Thomas-Fermi 模型53 11
2.2.2 Hohenberg-Kohn定理51 11
2.2.3 Kohn-Sham 方程式52 11
2.2.4 交換相干泛函(exchange-correlation functional) 13
2.2.5 虛位勢法(pseudopotential method)57-58 14
2.3 分子動力學模擬59 15
2.3.1 Verlet演算法60 15
2.3.2 正則系統的溫度控制:Nosé-Hoover控溫法62-63 16
第三章 研究方法 18
3.1 計算條件 18
3.2 結構模型建立 19
第四章 結果與討論 23
4.1 矽態鋰矽鍺合金的分析 23
4.2 液態鋰矽鍺合金的動力學性質 23
4.2.1 濃度效應 24
4.2.2 溫度效應 37
4.3 液態鋰矽鍺合金的結構性質 51
4.4 液態鋰矽鍺合金之電子性質 83
第五章 非晶質結構分析 92
5.1 非晶相結構建構 92
5.2 非晶相固體結構分析 92
第六章 結論 107
參考文獻 109
dc.language.isozh-TW
dc.subject矽鍺合金zh_TW
dc.subject第一原理zh_TW
dc.subject鋰電池zh_TW
dc.subject負極zh_TW
dc.subject分子動力學模擬zh_TW
dc.subjectLi-ion batteryen
dc.subjectAIMDen
dc.subjectFirst-principles calculationen
dc.subjectanodeen
dc.title以第一原理計算探討鋰矽鍺合金之液相與非晶相之動力學與
結構性質
zh_TW
dc.titleFirst-Principles Study of the Dynamic and Structural Properties of Liquid and Amorphous LixSi0.5Ge0.5 Alloysen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林士剛(Shih-kang Lin),許文東(Wen-Dung Hsu),陳馨怡(Hsin-Yi Chen),羅友杰
dc.subject.keyword第一原理,鋰電池,負極,分子動力學模擬,矽鍺合金,zh_TW
dc.subject.keywordFirst-principles calculation,Li-ion battery,anode,AIMD,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201802990
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved