請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70473完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一薰(I-Hsuan Ethan Hong) | |
| dc.contributor.author | Chi-Hsiang Kuo | en |
| dc.contributor.author | 郭啟祥 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:28:57Z | - |
| dc.date.available | 2023-08-14 | |
| dc.date.copyright | 2018-08-14 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | Ali, M. M., Boylan, J. E., & Syntetos, A. A. (2012). Forecast errors and inventory performance under forecast information sharing. International Journal of Forecasting, 28(4), 830–841.
Arin, J., & Feltkamp, V. (2012). Coalitional games: monotonicity and core. European Journal of Operational Research, 216(1), 208–213. Chen, H. (2017). Undominated nonnegative excesses and core extensions of transferable utility games. European Journal of Operational Research, 261(1), 222–233. Drechsel, J., & Kimms, A. (2010). Computing core allocations in cooperative games with an application to cooperative procurement. International Journal of Production Economics, 128(1), 310–321. Elliott, G., Rothenberg, T. J., & Stock, J. H. (1992). Efficient tests for an autoregressive unit root. National Bureau of Economic Research Cambridge, Mass., USA. Fergany, H. A. (2016). Probabilistic multi-item inventory model with varying mixture shortage cost under restrictions. Springerplus, 5(1), 1351. Ganesh,M.,Raghunathan,S.,&Rajendran,C. (2014). The value of information sharing in a multi-product, multi-level supply chain: Impact of product substitution, demand correlation, and partial information sharing. Decision Support Systems, 58, 79–94. Gaur, V., Giloni, A., & Seshadri, S. (2005). Information sharing in a supply chain under arma demand. Management science, 51(6), 961–969. Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111–120. Hamilton,J.D. (1994). Timeseriesanalysis(Vol.2). PrincetonuniversitypressPrinceton. Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307. Kamijo, Y., & Kongo, T. (2012). Whose deletion does not affect your payoff? the difference between the shapley value, the egalitarian value, the solidarity value, and the banzhaf value. European Journal of Operational Research, 216(3), 638–646. Kruś, L., & Bronisz, P. (2000). Cooperative game solution concepts to a cost allocation problem. European Journal of Operational Research, 122(2), 258–271. Lee, H. L., Padmanabhan, V., & Whang, S. (1997a). The bullwhip effect in supply chains. Sloan management review, 38(3), 93. Lee, H. L., Padmanabhan, V., & Whang, S. (1997b). Information distortion in a supply chain: The bullwhip effect. Management science, 43(4), 546–558. Lee, H. L., Padmanabhan, V., & Whang, S. (2004). Information distortion in a supply chain: the bullwhip effect. Management science, 50(12_supplement), 1875–1886. Lee,H.L.,So,K.C.,&Tang,C.S. (2000). The value of information sharing in a two-level supply chain. Management science, 46(5), 626–643. Leng,M.,&Parlar,M. (2009). Allocation of cost savings in a three-level supply chain with demand information sharing: A cooperative-game approach. Operations Research, 57(1), 200–213. Lozano, S., Moreno, P., Adenso-Díaz, B., & Algaba, E. (2013). Cooperative game theory approach to allocating benefits of horizontal cooperation. European Journal of Operational Research, 229(2), 444–452. Montgomery, D. C., Bazaraa, M., & Keswani, A. K. (1973). Inventory models with a mixture of backorders and lost sales. Naval Research Logistics (NRL), 20(2), 255–263. Pankratz, A. (2009). Forecastingwithunivariatebox-jenkinsmodels: Conceptsandcases (Vol. 224). John Wiley & Sons. Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on applied mathematics, 17(6), 1163–1170. Shapley, L. S. (1953). A value for n-person games. Contributionsto the Theory of Games, 2(28), 307–317. Shibata, R. (1976). Selection of the order of an autoregressive model by akaike’s information criterion. Biometrika, 63(1), 117–126. Vidal-Puga, J. J. (2008). Forming coalitions and the shapley ntu value. European Journal of Operational Research, 190(3), 659–671. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70473 | - |
| dc.description.abstract | 網購的平台收集了許多銷售量的資訊,而其資訊可以被用在供應鏈的合作機制中,資訊共享同時也被視為節省存貨成本的重要關鍵,透過共享消費者資訊的方式,可以幫助全體供應鏈,降低過多庫存或是缺貨所產生的成本。在我們的研究中,我們將建構出網購平台,並探討資訊共享在供應鏈中的影響。此外,我們將使用合作賽局來探討供應鏈聯盟中成員的成本分擔,期望最後能找出供應鏈中穩定且公平的分配方式。 | zh_TW |
| dc.description.abstract | Shopping platforms collect sales information, which can be used in designing the coordination mechanism in a supply chain. Information sharing is an important key to save inventory cost. The sales information can help the players
of the supply chain to reduce the cost of overstock and out-of-stock. In our study, we construct the shopping platform to discuss the effect of information sharing in a supply chain. Furthermore, we use the cooperative game theory to discuss the allocation of cost savings among various players in supply chain coalitions. The goal of our study is to find the stable and fair allocation in the supply chain. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:28:57Z (GMT). No. of bitstreams: 1 ntu-107-R05546045-1.pdf: 571938 bytes, checksum: 4496da66342549ae77975791080cee2a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要i
Abstract ii Contents iv List of Figures v List of Tables vi 1 Introduction 1 2 Model Framework 5 2.1 Information Sharing in Supply Chain Model . . . . . . . . . . . . . . . . 5 2.2 Cost Formulation of Each Player in Different Conditions . . . . . . . . . 20 2.3 The Total Cost of the Eight Types of Coalitions . . . . . . . . . . . . . . 22 3 Method of Solution 27 3.1 Characteristic-Function of Cooperative Game Theory . . . . . . . . . . . 27 3.2 Stability of the Eight Types of Coalitions . . . . . . . . . . . . . . . . . . 30 3.3 Cooperative Game Methods to Allocate the Cost Savings of Coalitions . . 34 4 Case Study 41 4.1 Stationary Process Test and the Orders of AR(p) . . . . . . . . . . . . . . 41 4.2 Cost Savings and Allocation of Supply Chain Coalition . . . . . . . . . . 47 5 Conclusion 53 References 55 Appendix 58 | |
| dc.language.iso | en | |
| dc.subject | 合作賽局 | zh_TW |
| dc.subject | 夏普利值 | zh_TW |
| dc.subject | 資訊共享 | zh_TW |
| dc.subject | 核仁解 | zh_TW |
| dc.subject | 核心解 | zh_TW |
| dc.subject | Shapley value | en |
| dc.subject | Cooperative game theory | en |
| dc.subject | The core solution | en |
| dc.subject | The nucleolus solution | en |
| dc.subject | Information sharing | en |
| dc.title | 供應鏈聯盟之資訊共享暨其成本分擔:
合作賽局理論分析 | zh_TW |
| dc.title | A Cooperative Game Theoretic Analysis of Information
Sharing and Cost Savings Allocation in Supply Chain Coalition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文智(Wen-Chih Chen),吳政鴻(Cheng-Hung Wu) | |
| dc.subject.keyword | 資訊共享,合作賽局,核心解,核仁解,夏普利值, | zh_TW |
| dc.subject.keyword | Information sharing,Cooperative game theory,The core solution,The nucleolus solution,Shapley value, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU201803019 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 558.53 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
