請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70185
標題: | 古代天文學之本輪曲線運用與概週期函數使用分析 The Use of Epicycle and Almost Periodic Functions in Ancient Astronomy |
作者: | Tzu-Jing Lin 林子靖 |
指導教授: | 張海潮(Hai-Chau Chang) |
關鍵字: | 概週期函數,本輪均輪模型,本輪曲線,天文學, almost periodic functions,epicycle-deferent,epicycle,astronomy, |
出版年 : | 2018 |
學位: | 碩士 |
摘要: | 本論文共分為三章:第一章說明本輪曲線及古代天文學家的行星本輪均輪模型,其中主要包含了本輪曲線的性質與托勒密的本輪均輪模型。第二章引入現代概週期函數,包含到了概週期函數定義與基本性質。第三章為概週期函數與本輪均輪模型連結,古代雖然沒有概週期函數的工具,但此工具卻可解釋本輪均輪模型,我們將驗證本輪均輪模型可用於繪製概週期函數圖。 This thesis consists of three chapters. In the first chapter, we will see the definition of epicycles and epicycle model of planets in ancient astronomy. This chapter mainly describes the properties of epicycles and Ptolemy's epicycle model of planets. In the second chapter will introduce the modern theory of almost periodic functions. This chapter mainly explains the properties of almost periodic functions. In the third chapter, we will the connect epicycle model and almost periodic functions. Ancient astronomers did not access to the theory of almost periodic functions, however, the tool of almost periodic functions was in line with the observations of ancient astronomy. We will see that using the epicycle models can draw the graph of almost periodic functions. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70185 |
DOI: | 10.6342/NTU201800151 |
全文授權: | 有償授權 |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 1.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。