Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛人愷(Ren-Kae Shiue)
dc.contributor.authorShan-Bo Wangen
dc.contributor.author王繕柏zh_TW
dc.date.accessioned2021-06-17T03:24:35Z-
dc.date.available2021-06-21
dc.date.copyright2018-06-21
dc.date.issued2018
dc.date.submitted2018-06-04
dc.identifier.citation1. Donachie, M.J., Titanium: A Technical Guide, 2nd Edition. 2000: ASM International.
2. Emsley, J., Nature's Building Blocks: An A-Z Guide to the Elements. 2001: Oxford University Press.
3. J.L. Walter, M.R.J. and C.T. Sims, Titanium and its alloys: Principles of Alloying Titanium. 1988.
4. Quadbeck, P. and C. Müller. Titanium foams replace injured bones - Research News 09-2010-Topic 1 – Fraunhofer-Gesellschaft. 2010; Available from: https://www.fraunhofer.de/en/press/research-news/2010/09/titanium-foams-replace-injured-bones.html.
5. 鍾偉志,SP-700 鈦合金雷射銲件之熱處理及顯微組織研究。 國立台灣大學碩士論文,2006。
6. Masterton, W.L. and C.N. Hurley, Chemistry: Principles and Reactions. 2008: Cengage Learning.
7. Peng, Y.Q.X.H.J., X.B. Liu, and K. Peng, Atomic states, potential energies, volumes, stability and brittleness of ordered FCC Ti3Al-type alloys. 2005.
8. 吳政淵,使用鈦基填料紅外線硬銲鈦合金之研究,國立台灣大學博士論文, 2009。
9. Li, L.-q., X.-s. Feng, and Y.-b. Chen, Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal. Transactions of Nonferrous Metals Society of China, 2008. 18(5): p. 1065-1070.
10. Schwartz, M., Introduction to Brazing and Soldering. ASM Handbook, 1993.
11. Guedes, A., et al., The effect of brazing temperature on the titanium/glass-ceramic bonding. Journal of Materials Processing Technology, 1999. 92-93: p. 102-106.
12. Liu, H.B., Vacuum brazing of SiO2 glass ceramic and Ti–6Al–4V alloy using AgCuTi filler foil. Materials Science and Engineering: A, 2008. 498(1–2): p. 321-326.
13. Kohl, W.H., Soldering and brazing. Vacuum, 1964. 14(5): p. 175-198.
14. Yue, X., Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal. Materials Characterization, 2008. 59(12): p. 1721-1727.
15. Naidich, Y.V. and e. al, Liquid metal wettability and advanced ceramic brazing. Journal of the European Ceramic Society, 2008. 28(4): p. 717-728.
16. Li, J. and e. al, Microstructure of high temperature Ti-based brazing alloys and wettability on SiC ceramic. Materials & Design, 2009. 30(2): p. 275-279.
17. Jr, R.W.M., Chapter 7 - Brazing: A Subclassification of Welding, in Joining of Materials and Structures. Butterworth-Heinemann: Burlington, 2004: p. 349-387.
18. Dai, W. and e. al, Torch brazing 3003 aluminum alloy with Zn—Al filler metal. Transactions of Nonferrous Metals Society of China, 2012. 22(1): p. 30-35.
19. Koo, I.-T.H.a.C.-H., Vacuum-furnace brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni filler-metal. Materials Science and Engineering: A, 2005. 398(1–2): p. 113-127.
20. Botstein, O., A. Schwarzman, and A. Rabinkin, Induction brazing of Ti-6Al-4V alloy with amorphous 25Ti-25Zr-50Cu brazing filler metal. Materials Science and Engineering: A, 1996. 206(1): p. 14-23.
21. Noda, T., et al., Joining of TiAl and steels by induction brazing. Materials Science and Engineering: A, 1997. 239–240(0): p. 613-618.
22. Ji, H., et al., Mechanical properties and microstructures of hybrid ultrasonic resistance brazing of WC-Co/BeCu. Journal of Materials Processing Technology, 2012. 212(9): p. 1885-1891.
23. Shiue, R.K., S.K. Wu, and Y.T. Chen, Strong bonding of infrared brazed α2-Ti3Al and Ti–6Al–4V using Ti–Cu–Ni fillers. Intermetallics, 2010. 18(1): p. 107-114.
24. Shiue, R.K., et al., Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals. Intermetallics, 2008. 16(9): p. 1083-1089.
25. Pearmain, K., B.A. Unvala, and B.H. Barter, A laboratory technique for electron beam brazing. Vacuum, 1973.
26. Jeon, M.-K., et al., A study on heat flow and temperature monitoring in the laser brazing of a pin-to-plate joint. Journal of Materials Processing Technology, 1998. 82(1–3): p. 53-60.
27. Rabinkin, A., Brazing Filler Metals, in Encyclopedia of Materials: Science and Technology (Second Edition). K.H.J.B. Editors-in-Chief, 2002: p. 1-8.
28. Du, Y.C. and R.K. Shiue, Infrared brazing of Ti–6Al–4V using two silver-based braze alloys. Journal of Materials Processing Technology, 2009. 209(11): p. 5161-5166.
29. S.-h. Chen, L.-q.L., Y.-b. Chen, and D.-j. Liu, Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire. Transactions of Nonferrous Metals Society of China, 2010. 20(1): p. 64-70.
30. Liaw, D.W., et al., Infrared vacuum brazing of Ti–6Al–4V and Nb using the Ti–15Cu–15Ni foil. Materials Science and Engineering: A, 2007. 454–455(0): p. 104-113.
31. 葉子暘,使用鈦基填料真空硬銲鈦合金之研究,國立台灣大學博士論文, 2013。
32. J.G. Lee, e.a., Low-temperature brazing of titanium by the application of a Zr–Ti–Ni–Cu–Bebulk metallic glass (BMG) alloy as a filler. Intermetallics, 2010. 18(1): p. 70-73.
33. X. Fu, e.a., Experimental study on the phase equilibria of the Ag–Ti system. Materials Science and Engineering: A, 2005. 408(1–2): p. 190-194.
34. C. Guo, e.a., Microstructure and tribological properties of TiAg intermetallic compound coating. Applied Surface Science, 2011. 257(24): p. 10692-10698.
35. Wang, S.S., et al., Corrosion behavior of Al–Si–Cu–(Sn, Zn) brazing filler metals. Materials Characterization, 2001. 47(5): p. 401-409.
36. Zhang, G.-f., et al., Development of Al-12Si-xTi system active ternary filler metals for Al metal matrix composites. Transactions of Nonferrous Metals Society of China, 2012. 22(3): p. 596-603.
37. Rabinkin, A., Amorphous Ti-Zr Base METGLAS Brazing Filler Metals. Scripta Metallurgica, 1991.
38. High vacuum furnace for brazing aero-space alloys. Vacuum, 1977.
39. Davis, J.R., Metals Handbook. ASM International, 1998.
40. Walter, J.L., M.R. Jackson, and C.T. Sims, Titanium and its alloys: Principles of Alloying Titanium. 1988: ASM International.
41. Guanjun, Y. and H. Shiming, Study on the phase equilibria of the Ti–Ni–Nb ternary system at 900°C. Journal of Alloys and Compounds, 2000. 297(1–2): p. 226-230.
42. Lin, C.C., et al., Vacuum brazing Mo using Ti–Ni–Nb braze alloys. International Journal of Refractory Metals and Hard Materials, 2011. 29(5): p. 641-644.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69706-
dc.description.abstract本研究採用鈦基填料Ti-35Ni-25Nb作為銲料,利用真空加熱爐作為熱源分別硬銲商用純鈦(CP-Ti)以及Ti-15-3兩種常見的基材合金,探討在不同的硬銲溫度下,利用電子微探分析儀(EPMA)以及掃描式電子顯微鏡(SEM),進行顯微組織演化、接點剪力強度之研究。
在CP-Ti/Ti-35Ni-25Nb/CP-Ti的部分,可發現各溫度參數下銲道中皆出現介金屬化合物Ti2Ni,此種介金屬化合物的出現會嚴重影響材料機械性質,Ti2Ni本身呈現相當高的脆性,當施加應力時容易造成Ti2Ni本身的破裂、進而使破裂延伸,其主要出現在Ti2Ni和α-Ti的共析組織,此外,共析組織中兩相的交界也容易導致裂縫的延伸。在本實驗中發現將硬銲溫度提高至1200 ℃後,可降低Ti2Ni在銲道中的比例,同時也會提高剪力強度,其原因主要和填料內的Ni成分在硬銲過程後的分布有關,Ni在銲道中的濃度下降使得Ti2Ni不易形成,而將會變為形成α-Ti及β-Ti為主。Ti-15-3/Ti-35Ni-25Nb/Ti-15-3的部分,相同的,也會在銲道中發現介金屬化合物Ti2Ni,同樣嚴重影響到材料之機械性質,出現原因主要為共晶反應形成的β-Ti與Ti2Ni。隨著硬銲溫度提高至1200℃、或是在1100℃時將硬銲時間拉長至30分鐘後,Ti2Ni將不會出現在銲道內,銲道整體均為β-Ti,而剪力強度也會明顯提高,但在高溫時,由於硬銲溫度超過β-transus temperature許多,導致β-Ti容易晶粒粗化,故將硬銲時間拉長是較好的方法。
zh_TW
dc.description.abstractIn this research, titanium-based filler Ti-35Ni-25Nb is used to braze CP-Ti and Ti-15-3 plates in vacuum. Microstructural evolution, shear strength, wetting behavior and phase identification are assessed in the experiment. Specimens prepared with standard metallographic procedure are examined using electron probe microanalyzer (EPMA) equipped with the wavelength dispersive spectroscope (WDS) and SEM for microstructural evolution observation and quantitative chemical analysis.
In the part of CP-Ti/Ti-35Ni-25Nb/CP-Ti, intermetallic compound, Ti2Ni, appeared in the brazing zone under various temperature parameters. The appearance of this intermetallic compound can seriously affect the mechanical properties of this material. Ti2Ni exhibits high brittleness, and when shear strength is applied, it easily causes the fracture. It mainly occurs in the eutectoid structure of Ti2Ni and α-Ti. In addition, the phase boundary of the eutectoid structure also easily leads to the growth of cracks. In this experiment, it was found that increasing the brazing temperature to 1200°C can reduce the proportion of Ti2Ni in brazing zone and also increase the shear strength, which is due to the reduction of Ni in brazing zone after the brazing process. Ni in the brazing zone decreases, making it difficult for Ti2Ni to form, and will become dominated by the α-Ti and β-Ti. In the part of Ti-15-3/Ti-35Ni-25Nb/Ti-15-3, the intermetallic compound, Ti2Ni, is also found in the brazing zone, and the same, it will also seriously affect the mechanical properties of the material. However, as the brazing temperature is increased to 1200°C, or the brazing time is extended to 30 minutes at 1100°C, Ti2Ni will not appear in the brazing zone, the overall brazing zone is β-Ti, and the shear strength also be significantly improved.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:24:35Z (GMT). No. of bitstreams: 1
ntu-107-R05527056-1.pdf: 6034117 bytes, checksum: 694a4bec2815b95cf02f11c78aef28ad (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目 錄
摘要 I
目 錄 III
圖目錄 V
表目錄 VIII
第一章 前言 1
第二章 文獻回顧 3
2-1 鈦及鈦合金 3
2-1-1 鈦及鈦合金之簡介 3
2-1-2 鈦的基本性質 4
2-1-3 合金元素對鈦的影響 5
2-1-4 鈦合金的分類 7
2-2 硬銲接合 8
2-3 硬銲製程設備 11
2-4 鈦合金硬銲 13
2-5 本研究中使用之鈦合金 15
2-5-1 CP-Ti (Commercially pure titanium) 15
2-5-2 Ti-15-3 (Ti-15V-3Cr-3Al-3Sn, wt%) 15
2-6 本研究中使用之硬銲填料 16
第三章 實驗設備與方法 25
3-1 實驗目的 25
3-2 實驗材料 26
3-3 硬銲銲件製備流程及設備 26
3-4 EPMA全定量分析及EBSD / SEM顯微組織 27
3-5 剪應力測試及SEM破壞面觀察 27
第四章 實驗結果與討論 30
4-1 CP-Ti/Ti-35Ni-25Nb/CP-Ti銲道 30
4-1-1 CP-Ti/Ti-35Ni-25Nb/CP-Ti 硬銲接合於1000℃ 30
4-1-2 CP-Ti/Ti-35Ni-25Nb/CP-Ti 硬銲接合於1100℃ 31
4-1-3 CP-Ti/Ti-35Ni-25Nb/CP-Ti 硬銲接合於1200℃ 32
4-1-4 CP-Ti/Ti-35Ni-25Nb/CP-Ti 銲點剪力試驗 33
4-2 Ti-15-3/Ti-35Ni-25Nb/Ti-15-3銲道 35
4-2-1 Ti-15-3/Ti-35Ni-25Nb/Ti-15-3 硬銲接合於1000℃ 35
4-2-2 Ti-15-3/Ti-35Ni-25Nb/Ti-15-3 硬銲接合於1100℃ 36
4-2-3 Ti-15-3/Ti-35Ni-25Nb/Ti-15-3 硬銲接合於1200℃ 36
4-2-4 Ti-15-3/Ti-35Ni-25Nb/Ti-15-3 銲點剪力試驗 37
第五章 結論 67
5-1 CP-Ti/Ti-35Ni-25Nb/CP-Ti 硬銲結果 67
5-1-1 銲道觀察 67
5-1-2 銲點剪力測試 67
5-2 Ti-15-3/Ti-35Ni-25Nb/Ti-15-3 硬銲結果 68
5-2-1 銲道觀察 68
5-2-2 銲點剪力測試 68
參考文獻 69
dc.language.isozh-TW
dc.subject剪力強度zh_TW
dc.subject顯微結構zh_TW
dc.subject鈦合金zh_TW
dc.subject鈦基填料zh_TW
dc.subjectTi-based filleren
dc.subjectTi alloyen
dc.subjectmicrostructural evolutionen
dc.subjectshear strengthen
dc.title使用Ti-Ni-Nb填料真空硬銲鈦合金之研究zh_TW
dc.titleThe Study of Vacuum Brazing Titanium Alloys Using the Ti-Ni-Nb Filleren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡履文,郭東昊
dc.subject.keyword鈦基填料,鈦合金,顯微結構,剪力強度,zh_TW
dc.subject.keywordTi-based filler,Ti alloy,microstructural evolution,shear strength,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201800900
dc.rights.note有償授權
dc.date.accepted2018-06-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved