Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69353
標題: 探勘顧客對於產品新功能之情感變化
Mining Time-Aware Consumer Attitude Toward Highlighted Product Features
作者: Wen-Jie Ye
葉文傑
指導教授: 李瑞庭
關鍵字: 意見探勘,消費者評論,情感分析,隱含狄利克雷分布模型,歸一化指數函數,
Opinion mining,Consumer review,Sentiment analysis,Latent Dirichlet Allocation model,Softmax function,
出版年 : 2018
學位: 碩士
摘要: 廠商通常會在新產品中加入較優越、較新穎的功能去吸引消費者;但是產品新功能卻不一定能滿足消費者的需求。因此,我們提出一個架構去捕捉消費者對於產品新功能的評價,以及這些評價隨時間的變化。我們的架構包含四個階段:第一階段,我們找出產品新功能並產生對應的種子字詞。第二階段,我們修改隱含狄利克雷分布模型,以蒐集出現在評論中且和新功能相關的字詞。第三階段,我們用蒐集到的特徵詞做情感分析,並且針對每一個產品新功能,依照時間畫出情感趨勢圖。最後,我們透過特徵詞以及情感分析的協助,針對每個產品新功能,產生簡單扼要的摘要。實驗結果顯示,我們提出的方法能夠產生具有辨別力的主題,以及可以找到真正和特徵相關的字詞,且情感趨勢圖和新功能的摘要,可提供消費者及廠商豐富的資訊,以及管理上的見解及應用。
Manufacturers often introduce some highlighted features of their new products to attract consumers. However, highlighted features may or may not fulfill consumers’ needs. Therefore, we propose a framework to capture consumers’ attitude toward highlighted features and how their feedback changes with time. The proposed framework contains four phases. First, we preprocess online consumer reviews, find the highlighted features and generate seed words for each highlighted feature. Second, we modify the Latent Dirichlet Allocation Model (LDA) to iteratively collect the feature words relevant to each highlighted feature from consumer reviews. Third, for each highlighted feature, we perform sentiment analysis of the feature in each time period by using the feature words collected, and then visualize its sentiment tendency graph. Finally, we produce summaries for each highlighted feature and analyze the results obtained. The experiment results show our proposed framework can generate discriminative topics and capture the majority of feature words for each highlighted feature. Also, it can generate useful sentiment tendency graph and summary, which can provide quick references for consumers and valuable managerial insights for manufacturers.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69353
DOI: 10.6342/NTU201801456
全文授權: 有償授權
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.59 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved