Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorWen-Jie Yeen
dc.contributor.author葉文傑zh_TW
dc.date.accessioned2021-06-17T03:13:35Z-
dc.date.available2028-12-31
dc.date.copyright2018-07-23
dc.date.issued2018
dc.date.submitted2018-07-12
dc.identifier.citation[1] D. M. Blei, A. Y. Ng and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, Vol. 3, pages 993–1022, 2003.
[2] C. M. Bishop. Pattern recognition and machine learning. Springer, New York, 2006.
[3] N. Burns, Y. Bi, H. Wang and T. Anderson. A twofold-LDA model for customer review analysis. Proceedings of International IEEE/ACM Conferences on Web Intelligence and Intelligent Agent Technology, pages 253–256, 2011.
[4] N. Burns, Y. Bi, H. Wang and T. Anderson. Extended twofold-LDA model for two aspects in one sentence. Proceedings of the 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pages 265–275, 2012.
[5] J. Büschken and G. M. Allenby. Sentence-based text analysis for customer reviews. Marketing Science, Vol. 35, No. 6, pages 953–975, 2016.
[6] Michael J. Cafarella, Doug Downey, Stephen Soderland and Oren Etzioni. KnowItNow: Fast, scalable information extraction from the Web. Proceedings of Human Language Technology Conference on Empirical Methods in Natural Language Processing, pages 563–570, 2005.
[7] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B (methodological), pages 1–38, 1977.
[8] X. Ding, B. Liu and P. S. Yu. A holistic lexicon-based approach to opinion mining. Proceeding of the International Conference on Web Search and Data Mining, pages 231–240, 2008.
[9] E. Cambria, S. Poria, D. Hazarika and K. Kwok. SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 1795–1802, 2017.
[10] X. Fang and J. Zhan. Sentiment analysis using product review data. Journal of Big Data, Vol. 2, No. 1, pages 1–14, 2015.
[11] S. Geman and D. Geman. Stochastic reation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transaction On Pattern Analysis And Machine Intelligence, Vol. PAMI-6, No. 6, pages 721–741, 1984.
[12] S. Hingmire and S. Chakraborti. Topic labeled text classification: A weakly supervised apporach. Proceedings of the 37th Interational ACM SIGIR Conference on Research & Development in Information Retrieval, pages 385–394, 2014.
[13] T. Hofmann. Probabilistic latent semantic indexing. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrival, pages 50–57, 1999.
[14] T. Hofmann. Probabilistic latent semantic analysis. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 289–296, 1999.
[15] M. Hu and B. Liu. Mining and summarizing customer reviews. Proceedings of the 10th ACM SIGKDD Internation Conference on Knowledge Discovery and Data Mining, pages 168–177, 2004.
[16] E. T. Jaynes. Information theory and statistical mechanis. The Physical Review, Vol. 106, No. 4, page 620–630, 1957.
[17] W. Jin, H. H. Ho, and R. K. Srihari. OpinionMiner: A novel machine learning system for web opinion mining and extraction. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1195–1204, 2009.
[18] S. M. Kim and E. Hovy. Determining the sentiment of opinions. Proceedings of the 20th International Conference on Computational Linguistics, Article No. 1367, 2004.
[19] L. W. Ku, Y. T. Liang and H. H. Chen. Opinion extraction, summarization and tracking in news and blog corpora. Proceedings of American Association for Artificial Intelligence, pages 100–107, 2006.
[20] A. J.T. Lee, F.C. Yang, C.H. Chen, C.S. Wang and C.Y. Sun. Mining perceptual maps from consumer reviews. Decision Support Systems, Volume 82 Issue C, page 12–25, 2016.
[21] C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. Proceedings of ACM International Conference on Information and Knowledge Management, pages 375–384, 2009.
[22] B. Liu and M. Hu and J. Cheng. Opinion observer: Analyzing and comparing opinions on the web. Proceedings of the 14th International World Wide Web Conference, pages 342–351, 2005.
[23] Y. Lu, C. X. Zhai and N. Sundaresan. Rated aspect summarization of short comments. Proceedings of the 18th International World Wide Web Conference, pages 131–140, 2009.
[24] Q. Mei, X. Ling, M. Wondra, H. Su and C. Zhai. Topic sentiment mixture: Modeling facets and opinions in weblogs. Proceedings of the 16th International World Wide Web Conference, pages 171–180, 2007.
[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrando and J. Dean. Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pages 3111-3119, 2013.
[26] T. Nasukawa and J. Yi. Sentiment analysis: Capturing favorability using natural language processing. Proceedings of the 2nd Internation Conference on Knowledge Capture, pages 70–77, 2003.
[27] B. Pang, L. Lee and S. Vaithyanathan. Thumbs up?: Sentiment classification using machine learning techniques. Proceedings of the ACL Conference on Empirical Methods in Natural Language Processing, pages 79–86, 2002.
[28] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, page 271–278, 2004.
[29] A. M. Popescu and O. Etzioni. Extracting product features and opinions from reviews. Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pages 339–346, 2005.
[30] M. M. Rahman and H. Wang. Hidden topic sentiment model. Proceedings of the 25th International Conference on World Wide Web, pages 155–165, 2016.
[31] S. K. K. Santu, P. Sondhi and C. X. Zhai. Generative feature language models for mining implicit features from customer reviews. Proceedings of ACM International Conference on Information and Knowledge Management, pages 929–938, 2016.
[32] H. Saif, Y. He and H. Alani. Semantic sentiment analysis of Twitter. Proceedings of the 11th International Semantic Web Conference, pages 508–524, 2012.
[33] G. Somprasertsri and P. Lalitrojwong. Mining feature-opinion in online customer reviews for opinion summarization. Journal of Universal Computer Science, Vol. 16, No. 6, pages 938–955, 2010.
[34] M. Taboada, J. Brooke, M. Tofiloski, K. Voll and M. Stede. Lexicon-based methods for sentiment analysis. Journal of Computational Linguistics, Vol. 37, pages 267–307, 2011.
[35] Z. Zhai, B. Liu, H. Xu and P. Jia. Constrained LDA for grouping product features in opinion mining. Proceedings of the 15th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Volume Part I, pages 448–459, 2011.
[36] J. Zhu, H. Wang, M. Zhu, B. K. Tsou and M. Ma. Aspect-based opinion polling from customer reviews. IEEE Transactions on Affective Computing, Vol. 2, No. 1, pages 37–49, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69353-
dc.description.abstract廠商通常會在新產品中加入較優越、較新穎的功能去吸引消費者;但是產品新功能卻不一定能滿足消費者的需求。因此,我們提出一個架構去捕捉消費者對於產品新功能的評價,以及這些評價隨時間的變化。我們的架構包含四個階段:第一階段,我們找出產品新功能並產生對應的種子字詞。第二階段,我們修改隱含狄利克雷分布模型,以蒐集出現在評論中且和新功能相關的字詞。第三階段,我們用蒐集到的特徵詞做情感分析,並且針對每一個產品新功能,依照時間畫出情感趨勢圖。最後,我們透過特徵詞以及情感分析的協助,針對每個產品新功能,產生簡單扼要的摘要。實驗結果顯示,我們提出的方法能夠產生具有辨別力的主題,以及可以找到真正和特徵相關的字詞,且情感趨勢圖和新功能的摘要,可提供消費者及廠商豐富的資訊,以及管理上的見解及應用。zh_TW
dc.description.abstractManufacturers often introduce some highlighted features of their new products to attract consumers. However, highlighted features may or may not fulfill consumers’ needs. Therefore, we propose a framework to capture consumers’ attitude toward highlighted features and how their feedback changes with time. The proposed framework contains four phases. First, we preprocess online consumer reviews, find the highlighted features and generate seed words for each highlighted feature. Second, we modify the Latent Dirichlet Allocation Model (LDA) to iteratively collect the feature words relevant to each highlighted feature from consumer reviews. Third, for each highlighted feature, we perform sentiment analysis of the feature in each time period by using the feature words collected, and then visualize its sentiment tendency graph. Finally, we produce summaries for each highlighted feature and analyze the results obtained. The experiment results show our proposed framework can generate discriminative topics and capture the majority of feature words for each highlighted feature. Also, it can generate useful sentiment tendency graph and summary, which can provide quick references for consumers and valuable managerial insights for manufacturers.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:13:35Z (GMT). No. of bitstreams: 1
ntu-107-R05725003-1.pdf: 1630900 bytes, checksum: 7b6920c6f75a01b256caa751349ecb8d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Related Work 4
Chapter 3 The Proposed Framework 8
3.1 Feature identification and review preprocessing 8
3.2 Feature words 9
3.3 Sentiment analysis 14
3.4 Feature summarization 16
Chapter 4 Experiment Results 20
4.1 Datasets 20
4.2 Performance of clustering 20
4.3 Feature words selected by I-LDA. 23
4.4 Sentiment analysis and feature summaries. 24
Chapter 5 Conclusions and Future Work 30
References 33
dc.language.isoen
dc.subject意見探勘zh_TW
dc.subject消費者評論zh_TW
dc.subject情感分析zh_TW
dc.subject隱含狄利克雷分布模型zh_TW
dc.subject歸一化指數函數zh_TW
dc.subjectOpinion miningen
dc.subjectLatent Dirichlet Allocation modelen
dc.subjectConsumer reviewen
dc.subjectSoftmax functionen
dc.subjectSentiment analysisen
dc.title探勘顧客對於產品新功能之情感變化zh_TW
dc.titleMining Time-Aware Consumer Attitude Toward Highlighted Product Featuresen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁,許秉瑜
dc.subject.keyword意見探勘,消費者評論,情感分析,隱含狄利克雷分布模型,歸一化指數函數,zh_TW
dc.subject.keywordOpinion mining,Consumer review,Sentiment analysis,Latent Dirichlet Allocation model,Softmax function,en
dc.relation.page36
dc.identifier.doi10.6342/NTU201801456
dc.rights.note有償授權
dc.date.accepted2018-07-12
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved