請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69311
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂廷璋(Ting-Jang Lu) | |
dc.contributor.author | Ching-Hsin Tung | en |
dc.contributor.author | 董靜馨 | zh_TW |
dc.date.accessioned | 2021-06-17T03:12:39Z | - |
dc.date.available | 2019-08-06 | |
dc.date.copyright | 2018-08-06 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-13 | |
dc.identifier.citation | 文獻參考
1. 施雪芳。第壹部份:金針菇溶血蛋白質之純化、胺基酸定序、基因選殖及重組蛋白質之第貳部份:雞母珠毒蛋白經由抑制專一性硫醇抗氧化蛋白質而驅動細胞凋亡機轉的研究表現。國立臺灣大學生化學研究所學位論文 2000, 1-150。台北,台灣。 2. 蔡有光。離子井質譜儀於蛋白質體學上的應用。蛋白質體學。教育部顧問室生物技術科技教育改進計畫。2004。 3. 孫瑞祥,董夢秋,遲浩,楊兵,秀麗蘊,王樂珩,付岩,賀思敏。基於電子捕獲裂解/電子轉運裂解串聯質譜技術的蛋白質組學研究。生物化學與生物物理進展 2010;37: 94-102。 4. 游耀萱。Ganoderma microsporum 免疫調節蛋白GMI 在動物體之免疫佐劑與抗微生物感染活性之研究。國立臺灣大學生化科技學系學位論文 2011, 1-56。台北,台灣。 5. 孫瑞祥,羅蘭,遲浩,劉超賀,思敏。自頂向下(top-down)”的蛋白質組學—蛋白質變體的規模化鑑定。生物化學與生物物理進展 2015;42: 101~114。 6. 林稚傑,呂廷璋。利用熱安定性差異去除含有免疫調節蛋白FIP-fve 金針菇萃取液中之flammutoxin。大專學生研究計畫研究成果報告 2015;MOST 103-2815-C-002-173-B。台北,台灣。 7. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422:198-207. 8. Ahlf DR, Compton PD, Tran JC, Early BP, Thomas PM, Kelleher NL. Evaluation of the compact high-field orbitrap for top-down proteomics of human cells. J Proteome Res 2012; 11:4308-14. 9. Arnaud CH. Top-down proteomics becomes reality. Chem Eng News 2013; 91: 11-7. 10. Asakura T, Ohnishi T, Friedman S, Schwartz E. Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proc Natl Acad Sci USA 1974; 71: 1594-98. 11. Bao HN, Ushio H, Ohshima T. Antioxidative activity and antidiscoloration efficacy of ergothioneine in mushroom (Flammulina velutipes) extract added to beef and fish meats. J Agric Food Chem 2008; 56:10032-40. 12. Berne S, Krizaj I, Pohleven Turk T, Macek P, Sepcić K. Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 2002; 1570:153-9. 13. Berne S, Sepcic K, Anderluh G, Turk T, Macek P, Poklar Ulrih N. Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus. Biochemistry 2005; 44:11137-47. 14. Bernheimer AW, Oppenheim JD. Some properties of flammutoxin from the edible mushroom Flammulina velutipes. Toxicon 1987; 25: 1145-52. 15. Bordat P, Lerbret A, Demaret J-P, Affouard F, Descamps M. Comparative study of trehalose, sucrose and maltose by molecular modelling. Europhys Lett 2005; 65:41-7. 16. Bradford MM. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54. 17. Branca C, Maccarrone S, Magazu´ S, Maisano G, Bennington SM, Taylor J. Tetrahedral order in homologous disaccharide-water mixtures. J Chem Phys 2005; 22:174513. 18. Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL. Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol Cell Proteomics 2013; 12:3465-73. 19. Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2009; 2:25. 20. Chang HH, Hsieh KY, Yeh CH, Tu YP, Sheu F. Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. Int Immunopharm 2010; 10: 239-46. 21. Charles A Janeway, Jr, Paul Travers, Mark Walport, Mark J Shlomchik. Immunobiology. 5th. Garland Publishing 2001. 22. Chen B, Fowler A, Bhowmick S. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of mammalian cells. J Biomech Eng 2006; 128:335-46. 23. Chen G, Pramanik BN. LC-MS for protein characterization: current capabilities and future trends. Expert Rev Proteomics 2008; 5:435-44. 24. Choi Y, Cho KW, Jeong K, Jung S. Molecular dynamic simulations of trehalose as a ‘dynamic reducer’for solvent water molecules in the hydration shell. Carbohydr Res 2006; 341:1020-8. 25. Chowdhury SK, Chait BT. Method for the electrospray ionization of highly conductive aqueous solutions. Anal Chem 1991; 63: 1660-4. 26. Cole RB. Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom 2000; 35:763-72. 27. Das D, Maiti D, Chandra K, Mondal S, Ojha AK, Roy SK, Ghosh K, Islam SS. NMR and MALDI-TOFMS analysis of a heteroglycan isolated from hot water extract of edible mushroom, Volvariella bombycina. Carbohydr Res 2008; 343:2258-65. 28. Das D, Maiti D, Chandra K, Mondal S, Ojha AK, Roy SK, Ghosh K, Islam SS. NMR and MALDI-TOFMS analysis of a heteroglycan isolated from hot water extract of edible mushroom, Volvariella bombycina. Carbohydr Res 2008; 343:2258-65. 29. Drabik A, Bodzon-Kulakowska A, Suder P. Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nano LC-MS/MS protein identification. J Mass Spectrom 2012; 47: 1347-52. 30. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246:64-71. 31. Fernandez Espinar MT, Labarere J. Cloning and sequencing of the Aa-Pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita, and analysis of the predicted amino-acid sequence. Curr Genet 1997; 32:420-4. 32. Frank AM, Pesavento JJ, Mizzen CA, Kelleher NL, Pevzner PA. Interpreting top-down mass spectra using spectral alignment. Anal Chem 2008; 80:2499-505. 33. Fukushima M, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exptl Biol 2001; 226:758-65. 34. Gaskell SJ. Electrospray:principles and practice. J Mass Spectrom 1997; 32: 677-88. 35. Gornall AG, Bardawill CS, David MM. Determination of serum proteinby means of the Biuret reaction. J Biol Chem 1949; 177:751–6 36. Gulcicek EE, Colangelo CM, McMurray W, Stone K, Williams K, Wu T, Zhao H, Spratt H, Kurosky A, Wu B. Proteomics and the analysis of proteomic data: an overview of current protein-profiling technologies. Curr Protoc Bioinformatics 2005; 13:Unit 13.1. 37. Haak-Frendscho M, Kino K, Sone T, Jardieu P. Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol 1993; 150:101-13. 38. Han F, Liu Y, Guo LQ, Zeng XL, Liu ZM, Lin JF. Heterologous expression of the immunomodulatory protein gene from Ganoderma sinense in the basidiomycete Coprinopsis cinerea. J Appl Microbiol 2010; 109:1838-44. 39. Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. FEBS J 1994; 219: 187-93. 40. Hsin IL, Ou CC, Wu TC, Jan MS, Wu MF, Chiu LY, Lue KH, Ko JL. GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells. Autophagy 2011; 7:873-82. 41. Hsu HC, Hsu CI, Lin RH, Kao CL, Lin JY. Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J 1997; 323: 557-65. 42. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom 2005; 40:430-43. 43. Huang L, Sun F, Liang C, He YX, Bao R, Liu L, Zhou CZ. Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidium. Proteins 2009; 75:524-7. 44. Ignatova Z, Gierasch LM. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci 2006; 103:13357-61. 45. Ignatova Z, Gierasch LM. Effects of osmolytes on protein folding and aggregation in cells. Methods Enzymol 2007; 428:355-72. 46. Ikekawa T, Ikeda Y, Yoshioka Y, Nakanishi K, Yokoyama E, Yamazaki E. Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing. II. The structure of EA3 and further purification of EA5. J Pharmacobiodyn 1982; 5:576-81. 47. Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci 2009; 18:24-36. 48. Jang M, Eun J, Ushio H, Ohshima T. Antioxidative properties of mushroom (Flammulina Velutipes) crude extract on the oxidation of cod liver oil in emulsion. Food Sci. Biotechnol 2004; 13:215-8. 49. Eshraghi J, Chowdhury SK. Factors Affecting Electrospray Ionization of Effluents Containing Trlfluoroacetic Acid for High-Performance Liquid Chromatography/ Mass Spectrometry. Anal. Chem 1993; 65:3528-33. 50. Jang M, Eun J, Ushio H, Ohshima T. Antioxidative properties of mushroom (Flammulina Velutipes) crude extract on the oxidation of cod liver oil in emulsion. Food Sci. Biotechnol 2004; 13: 215-18. 51. Kilburn D, Townrow S, Muenier V, Richardson R, Alam A, Ubbink J. Organization and mobility of water in amorphous and crystalline trehalose. Nat Mater 2006; 5: 632-5. 52. Kino K, Yamsshita A, Yamaoka K, Watanabe J, Tanaka S, Ko K, Tsunoo H. Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8(LZ-8), form Ganiderma lucidum. J Biol Chem 1989; 264: 472-8. 53. Knudsen KE, Jensen BB, Hansen I. Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in beta-D-glucan. Br J Nutr 1993; 70: 537-56. 54. Ko JL, Lin SJ, Hsu CI, Kao CL, Lin JY. Molecular cloning and expression of a fungal immunomodulatory protein, FIP-fve, from Flammulina velutipes. J Formos Med Assoc 1997; 96: 517-24. 55. Ko JL, Hsu CI, Lin RH, Kao CL, Lin JY. A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino-acid-sequence. Eur J Biochem 1995; 228: 244-9. 56. Kuttel MM, Naidoo KJ. Ramachandran freeenergy surfaces for disaccharides: trehalose, a case study. Carbohydr Res 2005; 340:875-9. 57. Lakkireddy KKR, Navarro-González M, Velagapudi R, Kües U. Proteins expressed during hyphal aggregation for fruiting body formation in basidiomycetes. In: Savoie, JMC., editor. 7th International Conference on Mushroom Biology and Mushroom Products. France: Arcachon 2011. 58. Layne E. Spectrophotometric and Turbidimetric Methods for Measuring Proteins. Methods in Enzymology 1957; 3: 447-55. 59. LeDuc RD, Taylor GK, Kim YB, Januszyk TE, Bynum LH, Sola JV, Garavelli JS, Kelleher NL. ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res 2004; 32: W340-5. 60. Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG: Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol 2006; 143:65-9. 61. Lerbret A, Bordat P, Affouard F, Descamps M, Migliardo F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J Phys Chem B 2005; 109:11046-57. 62. Leung MYK, Fung KP, Choy YM. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacol 1997; 35: 255-63. 63. Lin WH, Hung CH, Hsu CI, Lin JY. Dimerization of the N-terminal amphipathic α-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast twohybrid system and site-directed mutagenesis. J Biol Chem 1997; 272:20044-8. 64. Lowry OH, Rosbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75. 65. Zamdborg L, LeDuc RD, Glowacz KJ, Kim YB, Viswanathan V, Spaulding IT, Early BP, Bluhm EJ, Babai S, Kelleher NL. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res 2007; 35:W701-6. 66. Lin JY, Lin YJ, Chen CC, Wu HL, Shi GY, Jeng TW. Cardiotoxic protein from edible mushrooms. Nature 1974; 252: 235-7. 67. Lin WH, Hung CH, Hsu CI, Lin JY. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 1997; 272: 20044-8. 68. Liu X, Hengel S, Wu S, Tolić N, Pasa-Tolić L, Pevzner PA. Identification of ultramodified proteins using top-down spectra. J Proteome Res. 2013; 12:5830-8. 69. Liu X, Sirotkin Y, Shen Y, Anderson G, Tsai YS, Ting YS, Goodlett DR, Smith RD, Bafna V, Pevzner PA. Protein identification using top-down. Mol Cell Proteomics 2012; 11:M111. 70. Lull C, Wichers HJ, Savelkoul HFJ. Antiinflammatory and Immunomodulating Properties of Fungal Metabolites. Mediators Inflam 2005; 2:63-80. 71. Lv H, Kong Y, Yao Q, Zhang B, Leng FW, Bian HJ, Balzarini J, Van Damme E, Bao JK. Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine 2009; 16:198-205. 72. Macek B, Waanders LF, Olsen JV, Mann M. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 2006; 5:949-58. 73. Mack LL, Kralik P, Rheude, A, Dole M. Molecular beams of macroions. II. J Chem Phys 1970; 52: 4977. 74. Mant CT, Hodges RS. Analysis of peptides by high-performance liquid chromatography. Methods Enzymol 1996; 271: 3-50. 75. Meng FY, Cargile BJ, Miller LM, Forbes AJ, Johnson JR, Kelleher NL. Informatics and multiplexing of intact protein identification in bacteria and the archaea. Nat Biotechnol 2001; 19: 952-7. 76. Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 2012; 11: O111.013698. 77. Narai A, Watanabe H, Iwanaga T, Tomita T, Shimizu M. Effect of a pore-forming protein derived from Flammulina velutipes on the Caco-2 intestinal epithelial cell monolayer. Biosci Biotechnol Biochem 2004; 68: 2230-8. 78. Ngai PH, Ng TB. A hemolysin from the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 2006; 72:1185-1191. 79. Ohno N, Terui T, Chiba N, Kurachi K, Adachi Y, Yadomae T. Resistance of highly branched (1-->3)-beta-D-glucans to formolysis. Chem Pharm Bull 1995; 43:1057-60. 80. Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ. Comprehensive on-line LC/LC/MS of proteins. Anal. Chem 1997; 69:1518-24. 81. Otagiri K, Ohkuma T, Ikekawa T, Tanaka S. Intensification of antitumor-immunity by protein-bound polysaccharide EA6, derived from Flammulina velutipes (Curt. ex Fr) Sing. combined with murine leukemia L1210 vaccine in animal experiments. J Pharm Dyn 1983; 6: 96-104. 82. Ou CC, Hsiao YM, Wang WH, Ko J, Lin MY. Stability of fungal immunomodulatory protein, FIP-gts and FIP-fve, in IFN- production. Food Agric Immunol 2009; 20: 319-32. 83. Paaventhan P, Joseph JS, Seow SV, Vaday S, Robinson H, Chua KY, Kolatkar PR. A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol 2003; 332:461-70. 84. Pace CN, Treviño S, Prabhakaran E, Scholtz JM. Protein structure, stability and solubility in water and other solvents. Philos Trans R Soc Lond B Biol Sci 2004; 359:1225-34. 85. Pan J, Borchers C H. Top-down structural analysis of post translationally modified proteins by Fourier transform ion cyclotron resonance-MS with hydrogen/deuterium exchange and electron capture dissociation. Proteomics 2013; 13: 974-981 86. Pang X, Yao W, Yang X, Xie C, Liu D, Zhang J, Gao Xiangdong. Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium. Carbohydrate Polymers 2007; 70: 291-7. 87. Pelegrine DHG, Moraes Santos Gomes MT. Whey proteins solubility curves at several temperature values. Ciencia e Natura, Universidade Federal de Santa Maria 2008; 30:17-25. 88. Rao RN, Vali RM, Shinde DD. On-line 2D-LC-ESI/MS/MS determination of rifaximin in rat serum. Biomed Chromatogr 2009; 23:1145-50. 89. Richard DS, Joseph AL, Charles GE, Charles JB, Harold RU. New developments in biochemical mass spectrometry:electrospray ionization. Anal Chem 1990; 62: 882-99. 90. Richard DS, Joseph AL, Rachel RO, Mark B, Harold RU. Principles and practice of electrospray ionization-mass spectrometry for large polypeptides and proteins. Mass Spectrom Rev 1991; 10: 359-451. 91. Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 1984; 11:601. 92. Sakurai N, Kaneko J, Kamio Y, Tomita T. Cloning, expression, and pore-forming properties of mature and precursor forms of pleurotolysin, a sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus. Biochim Biophys Acta 2004; 1679:65-73. 93. Scherperel G, Reid GE. Emerging methods in proteomics: top-down protein characterization by multistage tandem mass spectrometry. Analyst 2007; 132:500-6. 94. Sellami L, Belgacem O, Villard C, Openshaw ME, Barbier P, Lafitte D. In-source decay and pseudo tandem mass spectrometry fragmentation processes of entire high mass proteins on a hybrid vacuum matrix-assisted laser desorption ionization-quadrupole ion-trap time-of-flight mass spectrometer. Anal Chem 2012; 84:5180-5. 95. Senko MW, Remes PM, Canterbury JD, Mathur R, Song Q, Eliuk SM, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem 2013; 85:11710-4. 96. Sepcić K, Berne S, Potrich C, Turk T, Macek P, Menestrina G. Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem 2003; 270:1199-210. 97. Sepcić K, Berne S, Rebolj K, Batista U, Plemenitas A, Sentjurc M, Macek P. Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 2004; 575:81-85. 98. Shibata T, Kudou M, Hoshi Y, Kudo A, Nanashima N, Miyairi K. Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edible mushroom, Pleurotus eryngii . Toxicon 2010; 56:1436-1442. 99. Smiderle FR, Carbonero ER, Mellinger CG, Sassaki GL, Gorin PA, Iacomini M. Structural characterization of a polysaccharide and a β-glucan isolated from the edible mushroom Flammulina velutipes. Phytochemistry 2006; 67: 2189-96. 100. Sun RX, Dong MQ, Chi H, Yang B, Xiu LY, Wang LH, Fu Y, He SM. ECD/ETD-based tandem mass spectrometry in proteomics. Prog Biochem Biophys 2010; 37: 94-102. 101. Sun RX, Dong MQ, Song CQ, Chi H, Yang B, Xiu LY, Tao L, Jing ZY, Liu C, Wang LH, Fu Y, He SM. Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra. J Proteome Res 2010; 9:6354-67. 102. Sun RX, Luo L, Wu L, Wang RM, Zeng WF, Chi H, Liu C, He SM. pTop 1.0: A High-Accuracy and High-Efficiency Search Engine for Intact Protein Identification. Anal Chem 2016; 88:3082-90. 103. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 2004; 101: 9528-33. 104. Tadjibaeva G, Sabirov R, Tomita T. Flammutoxin, a cytolysin from the edible mushroom Flammulina velutipes, forms two different types of voltage-gated channels in lipid bilayer membranes. Biochim Biophys Acta 2000; 1467:431-443. 105. Taylor GK, Kim YB, Forbes AJ, Meng F, McCarthy R, Kelleher NL. Web and database software for identification of intact proteins using 'top down' mass spectrometry. Anal Chem 2003; 75: 4081-6. 106. Tanaka S, Ko K, Kino K, Tsuchiya K, Yamashita A, Murasugi A, Sakuma S, Tsunoo H. Complete amino acid sequence of an immunomodulatory protein, Ling Zhi-8 (LZ-8). J Biol Chem1989; 264:16372-7. 107. Tomita T, Ishikawa D, Noguchi T, Katayama E, HashimotoY. Assembly of flammutoxin, a cytolytic protein from the edible mushroom Flammulina velutipes, into a pore-forming ring-shaped oligomer on the target cell. Biochem J 1998; 333: 129-37. 108. Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y. Pleurotolysin, a novel sphin-gomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 2004; 279:26975-82. 109. Tong MH, Chien PJ, Chang HH, Tsai MJ, Sheu F. High processing tolerances of immunomodulatory proteins in Enoki and Reishi mushrooms. J Agric Food Chem 2008; 56: 3160-6. 110. Toshio A, Kazuhiko A, and Elias S. Stabilizing Effect of Various Organic Solvents on Protein. J Biol Chem 1978; 253:6423-6425. 111. Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, Tipton JD, Vellaichamy A, Kellie JF, Li M, Wu C, Sweet SM, Early BP, Siuti N, LeDuc RD, Compton PD, Thomas PM, Kelleher NL. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 2011; 480:254-8. 112. Tsay YG, Wang YH, Chiu CM, Shen BJ, Lee SC. A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal Biochem 2000; 287: 55-64. 113. Tsybin YO, Fornelli L, Stoermer C, Luebeck M, Parra J, Nallet S, Wurm FM, Hartmer R. Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. Anal Chem 2011; 83:8919-27. 114. Vidic I, Berne S, Drobne D, Macek P, Frangez R, Turk T, Strus J, Sepcic K. Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). Mycol Res 2005; 109:377–82, 83: 8919-27. 115. Vos A, M'Rabet L, Stahl B, Boehm G, Garssen J. Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immunol 2007; 27:97-140. 116. Wang H, Weening D, Jonkers E, Boer T, Stellaard F, Small AC, Preston T, Vonk RJ, Priebe MG: A curve fitting approach to estimate the extent of fermentation of indigestible carbohydrates. Eur J Clin Invest 2008; 38:863-8. 117. Wang, HX, Ng T B. Flammulin: a novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem Cell Biol 2000; 78: 699-702. 118. Wang M, Trigueros V, Paquereau L, Chavant L, Fournier D. Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. J Econ Entomol 2002; 95:603-7. 119. Wang YF, Wang M, Yin HP. Purification, characterization and immune activity of polysaccharides from Flammulina velutipes mycelium. Chinese Journal of Natural Medicines 2008; 6: 312-5. 120. Wells JM, McLuckey SA. Biol Mass Spectrom. Elsevier Academic Press Inc; San Diego: 2005. pp. 148-85. 121. Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 2001; 73:5683-90. 122. Wong, WS, Camirond WM, Pavlath AE. Structures and functionality of milk proteins. Crit Rev Food Sci Nutr 1996; 36: 807-44. 123. Xue Q, Ding Y, Shang C, Jiang C, Zhao M. Functional expression of LZ-8, a fungal immunomodulatory protein from Ganoderma lucidium in Pichia pastoris. J Gen Appl Microbiol 2008; 54:393-8. 124. Yamamoto S. Purification and properties of a lectin from the fruit bodies of Flammulina velutipes. Agric Biol Chem 1988; 52: 1485-93. 125. Yoshioka Y, Sano T, Ikekawa T. Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr) Sing. I. Chem. Pharm. Bull. 1973; 21: 1772-6. 126. Zhou H, Ning Z, Starr AE, Abu-Farha M, Figeys D. Advancements in top-down proteomics. Anal Chem 2012; 84:720-34. 127. Zhou XW, Xie MQ,; Hong F, Li QZ. Genomic Cloning and Characterization of a FIP-gsi Gene Encoding a Fungal Immunomo- dulatory Protein from Ganoderma sinense . Int J Med Mushrooms 2009; 11:77-86. 128. Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. a nonergodic process. J Am Chem Soc 1998; 120: 3265-6. 129. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 2000; 72: 563-73 130. Zubarev RA, Makarov A. Orbitrap mass spectrometry. Anal Chem 2013; 85: 5288-96. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69311 | - |
dc.description.abstract | 真菌免疫調節蛋白 (FIP-fve) 是一個具有潛在發展功能性食品的成分。然而,在 FIP-fve 的萃取物中不希望出現金針菇溶血蛋白質 (flammutoxin FTX),本研究應用加熱處理代替強化分離過程來分離 FIP-fve,同時排除了FTX。本實驗開發以 on-line desalting HPLC-UV-ESI-MS 方法,監測金針菇子實體中這兩種蛋白質熱穩定性的情形。以 molecular weight cut-off centrifugal filtration 和 on-line desalting HPLC-UV-ESI-MS 的方法簡化前處理過程並有效的移除鹽類,在移動相中添加 0.1% 三氟醋酸配合孔徑300 Å 逆相層析管柱可達到好的分離效果。在 HPLC-UV-ESI-MS 系統,使用 bovine serum albumin 作為標準蛋白質在 UV 280 nm 下進行檢測,100g 新鮮子實體可獲得 11 mg FIP-fve,質譜儀結果得到 FIP-fve 分子量為 12.74 kDa.,flammutoxin 分子量為 21.91 kDa.。在熱安定實驗結果顯示金針菇子實體加熱後,真菌免疫調節蛋白可能與其他成分作用,所以無法萃取出來。金針菇子實體以低溫萃取的蛋白質溶液進行耐熱試驗,顯示在較低濃度的溶液中,FIP-fve 和 FTX 都具有較高的熱穩定性,加入 0.1 M 海藻糖不會顯著改變兩種蛋白質的穩定性,加入 20% 乙醇結果顯示,兩種蛋白質對乙醇的耐受性是差的。含有 580μg/mL FIP-fve 和 452 μg/mL FTX 的冷水萃取物在 60℃ 下加熱 5 分鐘,可以有效地排除 FTX,並保持 75% 的 FIP-fve。 | zh_TW |
dc.description.abstract | Fungal immunomodulatory protein (FIP-fve) is a potential functional food ingredient. However, undesirable component flammutoxin (FTX) would occur in the extracted fraction of FIP-fve. In this paper, an application of heating processing instead of the intensive separation process was employed in fractionation of FIP-fve, meanwhile, exclusion of FTX was reached. A rapid analytical approach, on-line desalting HPLC-UV-ESI-MS method, for the analysis of FIP-fve and flammutoxin (FTX), two important bioactive proteins in the fruiting bodies of Flammulina velutipes, was developed. In this study, a highly efficient desalting method is provided using molecular weight cut-off centrifugal filtration and on-line desalting. Results indicated that using trifluoroacetic acid as a modifier on a 300 Å reversed-phase column renders effective separation. ESI-MS revealed that the apparent molecular masses of FIP-fve and FTX were 12.74 kDa and 21.91 kDa, respectively. Eleven milligrams of FIP-fve was obtained from 100 g of fresh fruiting bodies, and UV detection was performed at 280 nm using bovine serum albumin as the standard protein. The results of the heat stability test show that fungal immunomodulatory proteins cannot be extracted after the mushroom body is heated. Both FIP-fve and FTX had higher thermal stability in a lower concentration solution using a low-temperature extraction. Adding 0.1 M trehalose or 20% ethanol did not significantly alter the stability of both proteins. Heating cold water extract contained 580 μg/mL FIP-fve and 452 μg/mL FTX at 60℃ for 5 minutes could effectively exclude FTX and remain 75% of FIP-fve. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:12:39Z (GMT). No. of bitstreams: 1 ntu-107-D97641001-1.pdf: 4775239 bytes, checksum: aff6f983f7fbee1cb6fad7054b9fd12d (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目 錄
致謝 2 中文摘要 3 Abstract 4 目錄 5 圖目錄 8 表目錄 12 前言 13 壹、文獻整理 14 1. 金針菇生理活性成分: 14 1.1 蛋白質 14 1.1.1 真菌免疫調節蛋白 14 1.1.2 真菌免疫調節蛋白的分子生物學研究 25 1.1.3 溶血蛋白(hemolysin) 27 1.2 多醣 32 1.2.1 β-D-葡聚糖 32 1.2.2 金針菇多醣類 34 1.3 Ergothioneine 35 2. 蛋白質分析技術: 36 2.1 蛋白質純化 36 2.2 蛋白質定量分析 37 2.2.1 Biuret Method 37 2.2.2 Lowry Method 38 2.2.3 UV Absorbance 39 2.2.4 Bradford Method(Comassie Brilliant Blue G-250) 40 2.2.5 其他方法 40 2.3 利用質譜來鑑定及定序蛋白質 41 2.3.1 一般質譜掃描(MS scan) 41 2.3.2 串聯式質譜掃描(MS/MS scan 或 MS2 scan) 46 2.3.2.1 Bottom-up 48 2.3.2.2 Top-down 51 2.4 On-line LC–MS 去塩系統 58 3. 蛋白質的加工安定性之探討 60 3.1 熱處理應用 62 3.2 有機溶劑應用--乙醇 63 3.3 保護劑-海藻糖應用 65 3.3.1冷凍保護劑(cryoprotectants) 66 3.3.2生物保護(bioprotection) 66 貳、材料與方法 69 1. 實驗材料: 69 2. 化學試藥、器材及實驗方法 69 2.1.檢體前處理 69 2.1.1試藥: 69 2.1.2 實驗操作: 69 2.1.2. 子實體中蛋白質的耐熱試驗 69 2.1.2.2金針菇蛋白質區分物的耐熱試驗: 69 2.1.2.3金針菇蛋白質冷水萃取法: 69 2.1.2.4金針菇冷水粗萃液熱安定性試驗: 70 2.2. SDS膠體電泳分析 74 2.2.1試藥: 74 2.2.2 實驗操作: 74 2.3. 一般質譜掃描(MS scan)LC-UV-ESI/MS 分析 79 2.3.1試藥: 79 2.3.2 儀器及設備: 79 2.3.3 高效液相層析儀條件: 79 2.3.4質譜儀條件: 80 2.3.5 On-line desalting LC–MS系統: 81 2.3.6標準曲線的製作: 82 2.3.7鑑別試驗及含量測定: 82 2.4、Bottom-up LC- ESI/MS 分析 83 2.4.1 儀器及設備: 83 2.4.2 Digestion 83 2.4.3 In-gel digestion: 84 2.4.4高效液相層析儀條件: 84 2.4.5 質譜儀條件: 84 參、結果 86 1. 金針菇樣品 FIP-fve 與 FTX 分析平台的優化 86 1.1 HPLC 檢驗條件的優化 86 1.2. LC-UV vs. LC/MS Data 86 1.2.1 FIP-fve 86 1.2.1.1. LC-UV-ESI/MS 86 1.2.1.2. Bottom-up LC- ESI/MS 87 1.2.1.3 FIP-fve 的定量 87 1.2.2 Flammutoxin 87 1.2.2.1. LC-UV-ESI/MS 87 1.2.2.2. Bottom-up LC- ESI/MS 88 1.2.2.3. Flammutoxin 的定量 89 2. 子實體受熱後 FIP-fve 與 FTX 之萃取率差異 89 3. 萃取液中 FIP-fve 與 FTX 熱穩定性試驗 90 4. FIP-fve 和 FTX 在水萃液中耐熱試驗 91 肆、討論 93 1. 金針菇樣品 FIP-fve 與 FTX 分析平台的優化 93 2. FIP-fve 與 FTX 熱安定性差異的應用 95 伍、結論 97 文獻參考 99 縮寫 115 圖次 116 表次 132 附錄 133 | |
dc.language.iso | zh-TW | |
dc.title | 金針菇冷水萃取物中金針菇溶血蛋白質與真菌免疫調節蛋白的熱安定性差異 | zh_TW |
dc.title | Study of thermal stability difference between flammutoxin (FTX) and fungal immunomodulatory protein-fve (FIP-fve) in cold-water extracts of Flammulina velutipes | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳頌方(Sung-Fang Chen),許輔(Fuu Sheu),何國榮(Her, Guor-Rong),陳宏彰(Hong-Jhang Chen) | |
dc.subject.keyword | 金針菇,子實體,真菌免疫調節蛋白,金針菇溶血蛋白質,HPLC-UV-ESI-MS,蛋白質的穩定性, | zh_TW |
dc.subject.keyword | FIP-fve,Flammulina velutipes,flammutoxin,fruiting bodies,HPLC-UV-ESI-MS,protein stability, | en |
dc.relation.page | 141 | |
dc.identifier.doi | 10.6342/NTU201801110 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。