請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | |
| dc.contributor.author | Yun-Ju Lai | en |
| dc.contributor.author | 賴韻如 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:12:07Z | - |
| dc.date.available | 2023-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-16 | |
| dc.identifier.citation | 李清豔; 王京麗; 王邠; 陳虎彪; 張慶英; 梁鴻; 趙玉英. 苦瓜皂苷的HPLC - ELSD 指紋圖譜研究. 藥物分析雜誌. 2014, 34(5), 889-895.
高曉明; 張效林; 李振武. 微孔濾膜與大孔樹脂純化苦瓜皂苷的工藝研究. 食品與機械 2006, 22 (4), 49-51. 崔竣傑; 李波; 程蛟文; 胡開林. 苦瓜苦味物質及其生物合成研究進展. 園藝學報. 2015, 9, 1707-1718. 張中偉; 謝明勇; 王遠興; 王文靜. 比色法測定苦瓜總皂苷. 南昌大學學報(理科版) 2005, 29 (5), 447-449. 莊莎莎. 羅漢果皂苷的製備與純化. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2016. 郭秋平; 李慶國; 高英; 李衛民. 不同顯色方法對知母總皂苷含量測定的影響. 遼寧中醫雜誌 2008, 35 (6), 904-906. 陳方; 宋海峰. 皂苷分析方法研究進展. 天津中醫藥. 2005, 22(3), 257-259. 陳豔蘭; 楊雲川; 王成軍; 鄧水來; 周萍. 苦瓜酒中皂苷的含量測定. 大理學院學報. 2013, 6(12), 23-26. 劉丹; 吳葉紅; 李瑋桓; 張嫚麗; 史清文. 大孔吸附樹脂在天然產物分離純化中的應用. 中草藥. 2016, 15(47), 2764-2770. 劉宜叡. 加熱溫度及酵母菌生物轉換對苦瓜皂苷之影響. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2017. 盧鳳來; 劉金磊; 黃永林; 李典鵬. 高效液相色譜法同時測定羅漢果中的六種葫蘆烷三萜類皂苷. 色譜 2008, 26 (4), 504-508. Acebron, I.; Curiel, J. A.; de Las Rivas, B.; Munoz, R.; Mancheno, J. M., Cloning, production, purification and preliminary crystallographic analysis of a glycosidase from the food lactic acid bacterium Lactobacillus plantarum CECT 748T. Protein Expr Purif 2009, 68 (2), 177-82. Acebron, I.; Plaza-Vinuesa, L.; de Las Rivas, B.; Munoz, R.; Cumella, J.; Sanchez-Sancho, F.; Mancheno, J. M., Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum. Biochim Biophys Acta 2017, 1865 (10), 1227-1236. Aguedo, M.; Waché, Y.; Coste, F.; Husson, F.; Belin, J.-M., Impact of surfactants on the biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Journal of Molecular Catalysis B: Enzymatic 2004, 29 (1), 31-36. Alexandra, K.; Nora, T. H.; Martin, V.; Yvetta, G., ERG6 gene deletion modifies Kluyveromyces lactis susceptibility to various growth inhibitors. Yeast 2016, 33 (12), 621-632. Bai, J.; Zhu, Y.; Dong, Y., Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol 2016, 194, 717-726. Bai, L. Y.; Chiu, C. F.; Chu, P. C.; Lin, W. Y.; Chiu, S. J.; Weng, J. R., A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci Rep 2016, 6, 22419. Benincasa, C.; Muccilli, S.; Amenta, M.; Perri, E.; Romeo, F. V., Phenolic trend and hygienic quality of green table olives fermented with Lactobacillus plantarum starter culture. Food Chemistry 2015, 186, 271-276. Bermejo, C.; Rodríguez, E.; García, R.; Rodríguez-Peña, J. M.; Rodríguez de la Concepción, M. L.; Rivas, C.; Arias, P.; Nombela, C.; Posas, F.; Arroyo, J., The Sequential Activation of the Yeast HOG and SLT2 Pathways Is Required for Cell Survival to Cell Wall Stress. Molecular Biology of the Cell 2008, 19 (3), 1113-1124. Blanco, N.; Sanz, A. B.; Rodríguez‐Peña, J. M.; Nombela, C.; Farkaš, V.; Hurtado‐Guerrero, R.; Arroyo, J., Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. The FEBS Journal 2015, 282 (4), 715-731. Boekhorst, J.; Wels, M.; Kleerebezem, M.; Siezen, R. J., The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 2006, 152 (Pt 11), 3175-83. Bulik, D. A.; Olczak, M.; Lucero, H. A.; Osmond, B. C.; Robbins, P. W.; Specht, C. A., Chitin Synthesis in Saccharomyces cerevisiae in Response to Supplementation of Growth Medium with Glucosamine and Cell Wall Stress. Eukaryotic Cell 2003, 2 (5), 886-900. Cabib, E.; Farkas, V.; Kosik, O.; Blanco, N.; Arroyo, J.; McPhie, P., Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 2008, 283 (44), 29859-72. Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37 (Database issue), D233-8. Cao, X.; Sun, Y.; Lin, Y.; Pan, Y.; Farooq, U.; Xiang, L.; Qi, J., Antiaging of Cucurbitane Glycosides from Fruits of Momordica charantia L. Oxidative Medicine and Cellular Longevity 2018, 2018, 1-10. Carotti, C.; Ragni, E.; Palomares, O.; Fontaine, T.; Tedeschi, G.; Rodriguez, R.; Latge, J. P.; Vai, M.; Popolo, L., Characterization of recombinant forms of the yeast Gas1 protein and identification of residues essential for glucanosyltransferase activity and folding. Eur J Biochem 2004, 271 (18), 3635-45. Chang, C.-I.; Chen, C.-R.; Liao, Y.-W.; Cheng, H.-L.; Chen, Y.-C.; Chou, C.-H., Cucurbitane-Type Triterpenoids from Momordica charantia. Journal of Natural Products 2006, 69 (8), 1168-1171. Chen, J.; Tian, R.; Qiu, M.; Lu, L.; Zheng, Y.; Zhang, Z., Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry 2008, 69 (4), 1043-8. Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X., Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports 2005, 22 (3), 386-399. Chen, J. C.; Liu, W. Q.; Lu, L.; Qiu, M. H.; Zheng, Y. T.; Yang, L. M.; Zhang, X. M.; Zhou, L.; Li, Z. R., Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry 2009, 70 (1), 133-40. Chen, Y.; Zhang, W.; Zhao, T.; Li, F.; Zhang, M.; Li, J.; Zou, Y.; Wang, W.; Cobbina, S. J.; Wu, X.; Yang, L., Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food Chem 2016, 194, 712-22. Chen, Z.; Friedland, G. D.; Pereira, J. H.; Reveco, S. A.; Chan, R.; Park, J. I.; Thelen, M. P.; Adams, P. D.; Arkin, A. P.; Keasling, J. D.; Blanch, H. W.; Simmons, B. A.; Sale, K. L.; Chivian, D.; Chhabra, S. R., Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. J Biol Chem 2012, 287 (30), 25335-43. Chi, H.; Ji, G.-E., Transformation of Ginsenosides Rb1 and Re from Panax ginseng by Food Microorganisms. Biotechnology Letters 2005, 27 (11), 765-771. Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N., Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation. Applied and Environmental Microbiology 1994, 60 (11), 4142-4147. Cota, J.; Correa, T. L.; Damasio, A. R.; Diogo, J. A.; Hoffmam, Z. B.; Garcia, W.; Oliveira, L. C.; Prade, R. A.; Squina, F. M., Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. N Biotechnol 2015, 32 (1), 13-20. Enslin, P. R., Bitter principles of the cucurbitaceae. I.—Observations on the chemistry of cucurbitacin a. Journal of the Science of Food and Agriculture 1954, 5 (9), 410-416. Enslin, P. R.; Joubert, F. J.; Rehm, S., Bitter principles of the cucurbitaceae. III.—Elaterase, an Active Enzyme for the Hydrolysis of Bitter Principle Glycosides. Journal of the Science of Food and Agriculture 1956, 7 (10), 646-655. Fernández-Arrojo, L.; Marín, D.; Gómez De Segura, A.; Linde, D.; Alcalde, M.; Gutiérrez-Alonso, P.; Ghazi, I.; Plou, F. J.; Fernández-Lobato, M.; Ballesteros, A., Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xantophyllomyces dendrorhous. Process Biochemistry 2007, 42 (11), 1530-1536. Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.; Teiling, C.; Steffy, B.; Taylor, M.; Schwartz, A.; Richardson, T.; White, C.; Baele, G.; Maere, S.; Verstrepen, K. J., Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016, 166 (6), 1397-1410.e16. Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R., Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 2016, 6 (1), 47. Geng, X.; Ren, P.; Pi, G.; Shi, R.; Yuan, Z.; Wang, C., High selective purification of flavonoids from natural plants based on polymeric adsorbent with hydrogen-bonding interaction. J Chromatogr A 2009, 1216 (47), 8331-8. Gil, J. V.; Manzanares, P.; Genovés, S.; Vallés, S.; González-Candelas, L., Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. International Journal of Food Microbiology 2005, 103 (1), 57-68. Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I., HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis 2007, 20 (7), 618-626. Grimaldi, A.; Bartowsky, E.; Jiranek, V., A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. International Journal of Food Microbiology 2005, 105 (2), 233-244. Habicht, S. D.; Kind, V.; Rudloff, S.; Borsch, C.; Mueller, A. S.; Pallauf, J.; Yang, R.-y.; Krawinkel, M. B., Quantification of antidiabetic extracts and compounds in bitter gourd varieties. Food Chemistry 2011, 126 (1), 172-176. Hall, T. G.; Smukste, I.; Bresciano, K. R.; Wang, Y.; McKearn, D.; Savage, R. E., Identifying and Overcoming Matrix Effects in Drug Discovery and Development. 2012. Tandem Mass Spectrometry Jeevan Prasain, IntechOpen, DOI: 10.5772/32108. Available from: https://www.intechopen.com/books/tandem-mass-spectrometry-applications-and-principles/identifying-and-overcoming-matrix-effects-in-drug-discovery-and-development Holland, R.; Liu, S. Q.; Crow, V. L.; Delabre, M. L.; Lubbers, M.; Bennett, M.; Norris, G., Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. International Dairy Journal 2005, 15 (6), 711-718. Hsiao, P. C.; Liaw, C. C.; Hwang, S. Y.; Cheng, H. L.; Zhang, L. J.; Shen, C. C.; Hsu, F. L.; Kuo, Y. H., Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J Agric Food Chem 2013, 61 (12), 2979-86. Hu, S.; Wang, Y. H.; Avula, B.; Wang, M.; Khan, I. A., Separation of cucurbitane triterpenoids from bitter melon drinks and determination of partition coefficients using vortex-assisted dispersive liquid-phase microextraction followed by UHPLC analysis. J Sep Sci 2017, 40 (10), 2238-2245. Ibrahim, A.; Khalifa, S. I.; Khafagi, I.; Youssef, D. T.; Khan, S.; Mesbah, M.; Khan, I., Microbial Metabolism of Biologically Active Secondary Metabolites from Nerium oleander L. Chemical and Pharmaceutical Bulletin 2008, 56 (9), 1253-1258. Jie, Z.; Yan, H.; Takashi, K.; Harukuni, T.; Nobutaka, S.; Kei‐ichiro, I.; Motofumi, M.; Shigeyasu, M.; Takashi, S.; Toshihiro, A., Cucurbitane Triterpenoids from the Leaves of Momordica charantia, and Their Cancer Chemopreventive Effects and Cytotoxicities. Chemistry & Biodiversity 2012, 9 (2), 428-440. Kaper, T.; van Heusden, H. H.; van Loo, B.; Vasella, A.; van der Oost, J.; de Vos, W. M., Substrate Specificity Engineering of β-Mannosidase and β-Glucosidase from Pyrococcus by Exchange of Unique Active Site Residues. Biochemistry 2002, 41 (12), 4147-4155. Ketudat Cairns, J. R.; Esen, A., beta-Glucosidases. Cell Mol Life Sci 2010, 67 (20), 3389-405. Kleerebezem, M.; Boekhorst, J.; van Kranenburg, R.; Molenaar, D.; Kuipers, O. P.; Leer, R.; Tarchini, R.; Peters, S. A.; Sandbrink, H. M.; Fiers, M. W. E. J.; Stiekema, W.; Lankhorst, R. M. K.; Bron, P. A.; Hoffer, S. M.; Groot, M. N. N.; Kerkhoven, R.; de Vries, M.; Ursing, B.; de Vos, W. M.; Siezen, R. J., Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (4), 1990-1995. Kuo, H. P.; Wang, R.; Huang, C. Y.; Lai, J. T.; Lo, Y. C.; Huang, S. T., Characterization of an extracellular beta-glucosidase from Dekkera bruxellensis for resveratrol production. J Food Drug Anal 2018, 26 (1), 163-171. Landete, J. M.; Curiel, J. A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R., Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. Journal of Functional Foods 2014, 7, 322-329. Lees, N. D.; Bard, M., 6 Sterol biochemistry and regulation in the yeast Saccharomyces cerevisiae. In Lipid Metabolism and Membrane Biogenesis, Daum, G., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp 213-240. Li, J.; Chase, H. A., Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat Prod Rep 2010, 27 (10), 1493-510. Li, Q. Y.; Liang, H.; Chen, H. B.; Wang, B.; Zhao, Y. Y., A new cucurbitane triterpenoid from Momordica charantia. Chinese Chemical Letters 2007, 18 (7), 843-845. Liaw, C. C.; Huang, H. C.; Hsiao, P. C.; Zhang, L. J.; Lin, Z. H.; Hwang, S. Y.; Hsu, F. L.; Kuo, Y. H., 5beta,19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity. Planta Med 2015, 81 (1), 62-70. Lipovová, P.; Spiwok, V.; Mala, S.; Králová, B.; Russell, N. J., Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J. Food Sci. 2002, 20(2), 43-47. Liu, J. Q.; Chen, J. C.; Wang, C. F.; Qiu, M. H., New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules 2009, 14 (12), 4804-13. Lou, S.; Liu, Y.; Bai, Q.; Di, D., Adsorption Mechanism of Macroporous Adsorption Resins. Progress in Chemistry 2012, 24(8), 1427-1436. Liu, D.; Wu, Y-H.; Li, W-H.; Zhang, M-li.; Shi, Q-W. Application of macroporous adsorptive resins in separation and purification of natural products. Chinese Traditional and Herbal Drugs 2016, 47(15), 2764-2770. Lv, B.; Sun, H.; Huang, S.; Feng, X.; Jiang, T.; Li, C., Structure-guided engineering of the substrate specificity of a fungal β-glucuronidase toward triterpenoid saponins. Journal of Biological Chemistry 2018, 293 (2), 433-443. Maatooq, G.; El-Sharkawy, S.; Afifi, M. S.; Rosazza, J. P. N., Microbial Transformation of Cucurbitacin E 2-O-β-D-Glucopyranoside. Journal of Natural Products 1995, 58 (2), 165-171. Mazlan, F. A.; Annuar, M. S. M.; Sharifuddin, Y., Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential. PeerJ 2015, 3, e1376. Mekuria D.B.; Kashiwagi T.; Tebayashi S.; Kim C.S. Cucurbitane glucosides from Momordica charantia leaves as oviposition deterrents to the leafminer, Liriomyza trifolii. Z Naturforsch C. 2006, 61(1-2),81-86. Michalska, K.; Tan, K.; Li, H.; Hatzos-Skintges, C.; Bearden, J.; Babnigg, G.; Joachimiak, A., GH1-family 6-P-beta-glucosidases from human microbiome lactic acid bacteria. Acta Crystallogr D Biol Crystallogr 2013, 69 (Pt 3), 451-63. Michlmayr, H.; Kneifel, W., beta-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS Microbiol Lett 2014, 352 (1), 1-10. Michlmayr, H.; Schumann, C.; da Silva, N. M.; Kulbe, K. D.; del Hierro, A. M., Isolation and basic characterization of a beta-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J Appl Microbiol 2010, 108 (2), 550-9. Michlmayr, H.; Schumann, C.; Wurbs, P.; Barreira Braz da Silva, N. M.; Rogl, V.; Kulbe, K. D.; Del Hierro, A. M., A beta-glucosidase from Oenococcus oeni ATCC BAA-1163 with potential for aroma release in wine: Cloning and expression in E. coli. World J Microbiol Biotechnol 2010, 26 (7), 1281-9. Mo, C.; Valachovic, M.; Bard, M., The ERG28-encoded protein, Erg28p, interacts with both the sterol C-4 demethylation enzyme complex as well as the late biosynthetic protein, the C-24 sterol methyltransferase (Erg6p). Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2004, 1686 (1), 30-36. Moses, S. B. G.; Otero, R. R. C.; Pretorius, I. S., Domain engineering of Saccharomyces cerevisiae exoglucanases. Biotechnology Letters 2005, 27 (5), 355-362. Mrsa, V.; Klebl, F.; Tanner, W., Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase. Journal of Bacteriology 1993, 175 (7), 2102-2106. Muffler, K.; Leipold, D.; Scheller, M.-C.; Haas, C.; Steingroewer, J.; Bley, T.; Neuhaus, H. E.; Mirata, M. A.; Schrader, J.; Ulber, R., Biotransformation of triterpenes. Process Biochemistry 2011, 46 (1), 1-15. Mukherjee, P. K.; Nema, N. K.; Maity, N.; Sarkar, B. K., Phytochemical and therapeutic potential of cucumber. Fitoterapia 2013, 84, 227-236. Murakami, T.; Emoto, A.; Matsuda, H.; Yoshikawa, M., Medicinal Foodstuffs. XXI. Structures of New Cucurbitane-Type Triterpene Glycosides, Goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and New Oleanane-Type Triterpene Saponins, Goyasaponins I, II, and III, from the Fresh Fruit of Japanese Momordica charantia L. Chem. Pharm. Bull. 2001, 49 (1), 54-63. Muthukumar, G.; Suhng, S. H.; Magee, P. T.; Jewell, R. D.; Primerano, D. A., The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. Journal of Bacteriology 1993, 175 (2), 386-394. Nhiem, N. X.; Kiem, P. V.; Minh, C. V.; Ban, N. K.; Cuong, N. X.; Tung, N. H.; Ha, L. M.; Ha, D. T.; Tai, B. H.; Quang, T. H.; Ngoc, T. M.; Kwon, Y.-I.; Jang, H.-D.; Kim, Y. H., Alpha Glucosidase Inhibition Properties of Cucurbitane-Type Triterpene Glycosides from the Fruits of Momordica charantia. Chem. Pharm. Bull. 2010, 58 (5), 720-724. Oishi, Y.; Sakamoto, T.; Udagawa, H.; Taniguchi, H.; Kobayashi-Hattori, K.; Ozawa, Y.; Takita, T., Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction. Biosci Biotechnol Biochem 2007, 71 (3), 735-40. Okabe, H.; Miyahara, Y.; Yamauchi, T., Studies on the Constituents of Momordica charantia L. IV. Characterization of the New Cucurbitacin Glycosides of the Immature Fruits. (2) Structures of the Bitter Glycosides, Momordicosides K and L. Chem. Pharm. Bull. 1982, 30 (12), 4334-4340. Okabe, H.; Miyahara, Y.; Yamauchi, T., Studies on the Constituents of Momordica charantia L. III. Characterization of New Cucurbitacin Glycosides of the Immature Fruits. (1). Structures of Momordicosides G, F1, F2 and I. Chem. Pharm. Bull. 1982; 30(11), 3977-3986. Okabe, H.; Miyahara, Y.; Yamauchi, T.; Miyahara, K.; Kawasaki, T., Studies on the Constituents of Momordica charantia L. I. Isolation and Characterization of Momordicosides A and B, Glycosides of a Pentahydroxy-cucurbitane Triterpene. CHEMICAL & PHARMACEUTICAL BULLETIN 1980, 28 (9), 2753-2762. Oleszek, W.; Bialy, Z., Chromatographic determination of plant saponins--an update (2002-2005). J Chromatogr A 2006, 1112 (1-2), 78-91. Parra, A.; Rivas, F.; Garcia-Granados, A.; Martínez, A., Microbial Transformation of Triterpenoids. Mini-Reviews in Organic Chemistry, 2009, 6(4), 307-320. Popolo, L.; Ragni, E.; Carotti, C.; Palomares, O.; Aardema, R.; Back, J. W.; Dekker, H. L.; de Koning, L. J.; de Jong, L.; de Koster, C. G., Disulfide bond structure and domain organization of yeast beta(1,3)-glucanosyltransferases involved in cell wall biogenesis. J Biol Chem 2008, 283 (27), 18553-65. Ramírez, E.; Brenes, M.; García, P.; Medina, E.; Romero, C., Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes. Food Chemistry 2016, 206, 204-209. Rekha, C. R.; Vijayalakshmi, G., Isoflavone phytoestrogens in soymilk fermented with beta-glucosidase producing probiotic lactic acid bacteria. Int J Food Sci Nutr 2011, 62 (2), 111-20. Schmidt, S.; Rainieri, S.; Witte, S.; Matern, U.; Martens, S., Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 2011, 77 (5), 1751-7. Shanmugaprakash, M.; Kirthika, J.; Ragupathy, J.; Nilanee, K.; Manickam, A., Statistical based media optimization and production of naringinase using Aspergillus brasiliensis 1344. International Journal of Biological Macromolecules 2014, 64, 443-452. Siezen, R. J.; Francke, C.; Renckens, B.; Boekhorst, J.; Wels, M.; Kleerebezem, M.; van Hijum, S. A., Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 2012, 194 (1), 195-6. Siragusa, S.; De Angelis, M.; Calasso, M.; Campanella, D.; Minervini, F.; Di Cagno, R.; Gobbetti, M., Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. Journal of Proteomics 2014, 96, 366-380. Soto, M. L.; Moure, A.; Domínguez, H.; Parajó, J. C., Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering 2011, 105 (1), 1-27. Spano, G.; Rinaldi, A.; Ugliano, M.; Moio, L.; Beneduce, L.; Massa, S., A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J Appl Microbiol 2005, 98 (4), 855-61. Sun, K.; Cao, S.; Pei, L.; Matsuura, A.; Xiang, L.; Qi, J., A Steroidal Saponin from Ophiopogon japonicus Extends the Lifespan of Yeast via the Pathway Involved in SOD and UTH1. Int J Mol Sci 2013, 14 (3), 4461-75. Tan, J. S.; Yeo, C. R.; Popovich, D. G., Fermentation of protopanaxadiol type ginsenosides (PD) with probiotic Bifidobacterium lactis and Lactobacillus rhamnosus. Appl Microbiol Biotechnol 2017, 101 (13), 5427-5437. Tan, M. J.; Ye, J. M.; Turner, N.; Hohnen-Behrens, C.; Ke, C. Q.; Tang, C. P.; Chen, T.; Weiss, H. C.; Gesing, E. R.; Rowland, A.; James, D. E.; Ye, Y., Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008, 15 (3), 263-73. Tan, S. P.; Kha, T. C.; Parks, S. E.; Roach, P. D., Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review. Food Reviews International 2015, 32 (2), 181-202. Teparic, R.; Mrsa, V., Proteins involved in building, maintaining and remodeling of yeast cell walls. Curr Genet 2013, 59 (4), 171-85. Teste, M. A.; Francois, J. M.; Parrou, J. L., Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family. J Biol Chem 2010, 285 (35), 26815-24. Thimmappa, R.; Geisler, K.; Louveau, T.; O'Maille, P.; Osbourn, A., Triterpene Biosynthesis in Plants. Annual Review of Plant Biology 2014, 65 (1), 225-257. Tsai, C.-H.; Chen, E. C.-F.; Tsay, H.-S.; Huang, C.-j., Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial. Nutrition Journal 2012, 11, 4-4. Wan, J.; Zhang, Q.; Ye, W.; Wang, Y., Quantification and separation of protopanaxatriol and protopanaxadiol type saponins from Panax notoginseng with macroporous resins. Separation and Purification Technology 2008, 60 (2), 198-205. Wang, H.; Yang, Y.; Lin, L.; Zhou, W.; Liu, M.; Cheng, K.; Wang, W., Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb Cell Fact 2016, 15 (1), 134. Wang, R.; Lin, P.-Y.; Huang, S.-T.; Chiu, C.-H.; Lu, T.-J.; Lo, Y.-C., Hyperproduction of β-Glucanase Exg1 Promotes the Bioconversion of Mogrosides in Saccharomyces cerevisiae Mutants Defective in Mannoprotein Deposition. Journal of Agricultural and Food Chemistry 2015, 63 (47), 10271-10279. Wang, S.; Tang, L.; Guo, Y.; Yan, F.; Chen, F., Determination of momordicoside A in bitter melon by high-performance liquid chromatography after solid-phase extraction. Chromatographia 2001, 53 (7), 372-374. Wang, X.; Jiang, Y.; Wang, Y. W.; Huang, M. T.; Ho, C. T.; Huang, Q., Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 2008, 108 (2), 419-24. Wang, Y.-H.; Avula, B.; Liu, Y.; A Khan, I., Determination and Quantitation of Five Cucurbitane Triterpenoids in Momordica charantia by Reversed-Phase High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. Journal of Chromatographic Science. 2008, 46, 133-136. Wang, Z. F.; Wang, B. B.; Zhao, Y.; Wang, F. X.; Sun, Y.; Guo, R. J.; Song, X. B.; Xin, H. L.; Sun, X. G., Furostanol and Spirostanol Saponins from Tribulus terrestris. Molecules 2016, 21 (4), 429. Watanabe, T.; Ito, T.; Goda, H. M.; Ishibashi, Y.; Miyamoto, T.; Ikeda, K.; Taguchi, R.; Okino, N.; Ito, M., Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-beta-glucosidase identified in fungi. J Biol Chem 2015, 290 (2), 1005-19. Watanabe, T.; Tani, M.; Ishibashi, Y.; Endo, I.; Okino, N.; Ito, M., Ergosteryl-beta-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae. Glycobiology 2015, 25 (10), 1079-89. Xia, L.; Ruppert, M.; Wang, M.; Panjikar, S.; Lin, H.; Rajendran, C.; Barleben, L.; Stockigt, J., Structures of alkaloid biosynthetic glucosidases decode substrate specificity. ACS Chem Biol 2012, 7 (1), 226-34. Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S., Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. J Biosci Bioeng 2011, 112 (6), 545-50. Yan, S.; Wei, P. C.; Chen, Q.; Chen, X.; Wang, S. C.; Li, J. R.; Gao, C., Functional and structural characterization of a beta-glucosidase involved in saponin metabolism from intestinal bacteria. Biochem Biophys Res Commun 2018, 496 (4), 1349-1356. Zhang, J.; Cheng, Z.-H.; Yu, B.-Y.; Cordell, G. A.; Qiu, S. X., Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646. Tetrahedron Letters 2005, 46 (13), 2337-2340. Zhang, M.; Yang, H.; Zhang, H.; Wang, Y.; Hu, P., Development of a process for separation of mogroside V from Siraitia grosvenorii by macroporous resins. Molecules 2011, 16 (9), 7288-301. Zhu, Y.; Jia, H.; Xi, M.; Xu, L.; Wu, S.; Li, X., Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chem 2017, 214, 39-46. Zhuang, Y.; Yang, G. Y.; Chen, X.; Liu, Q.; Zhang, X.; Deng, Z.; Feng, Y., Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab Eng 2017, 42, 25-32. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69286 | - |
| dc.description.abstract | 苦瓜(Momordica charantia)為葫蘆科一年生草本植物,文獻指出苦瓜皂苷是苦瓜苦味及部分功效成分來源,為一群葫蘆烷型三萜類。本研究目的希望透過酵母菌發酵或乳酸菌之醣苷水解酵素來減少苦瓜中苦味皂苷含量。由於苦瓜皂苷骨架由具長鏈側枝的四環三萜構成,多為不帶醣基之皂苷元或修飾有一至兩個醣基之醣苷態。此類結構之皂苷於培養基質中之溶解度不佳,本實驗首先使用大孔吸附樹脂Diaion™ HP-20針對甲醇萃取物進行純化,收集70-100%梯度甲醇可流洗出之苦瓜皂苷,再透過Tween 20增加其溶解度,經微生物生長曲線及點試驗後,選定以含有0.05% Tween 20之苦瓜皂苷培養基進行後續轉換。經Saccharomyces cerevisiae BY4741和Lactobacillus plantarum BCRC 10069轉換後,觀察到兩者之苦瓜皂苷於轉換前後皆有波鋒消長情形,進一步分析後發現經兩者發酵後苦味皂苷Momordicoside K和Momordicine I皆有顯著下降趨勢。為確認是否為醣苷水解酶作用,於酵母菌選定缺乏合成醣苷水解酶基因之菌株進行發酵,而乳酸菌則透過表現其putative β-glucosidase LpBgl進行試驗,分析後皆發現苦瓜皂苷之轉換與鎖定的目標酵素皆無直接相關。最後為得知苦瓜皂苷之轉換情形,使用菌株發酵單一苦瓜皂苷進行觀察,發現在酵母菌與乳酸菌皆發現Momordicoside K含量之減少除轉換成皂苷元外,尚有一部份會轉換成Momordicoside L,可能為甲基轉移酶(transmethylases)或去甲基酶(demethylases)作用所致。綜合上述結果,可以發現酵母菌及乳酸菌中皆有可轉換苦瓜苦味皂苷之酵素,後續可再針對進行轉換之酵素進行探討及應用。 | zh_TW |
| dc.description.abstract | Momordica charantia is a member of the Curcurbitaceae family and is commonly known as bitter melon. Previous studies indicated that specific bitter melon saponins were contributed to the bitter taste and functional activities. The purpose of this study is to reduce the contents of bitter taste saponins by using yeast fermentation or glucosidase hydrolysis. Enhancing the solubility of bitter melon saponins by adding 0.05% Tween 20 is necessary due to the low polarity of tetracyclic triterpenoids of the bitter melon saponins. The results showed that the composition of saponins decline after fermentation with Saccharomyces cerevisiae or with Lactobacillus plantarum. Specifically, the contents of bitter taste saponins, momordiciside K and momordicine I decreased significantly after fermentation. To dissect the underlying mechanism, we used glucosidase deleted yeast to undergo fermentation and in vitro study with putative glucosidase LpBgl in LAB. Unfortunately, we did not identify specific glucosidase related to the hydrolysis of saponins. However, we discovered that momordicoside K was converted into aglycone and the other became momordicoside L. This results indicated that not only glucosidase involved in the biotransformation of saponins, but also possibly transmethylases or demethylases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:12:07Z (GMT). No. of bitstreams: 1 ntu-107-R05641004-1.pdf: 5096176 bytes, checksum: b5156c39c2f7d4d54d5598888c29c236 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 壹、前言 1
貳、文獻回顧 2 第一節、 苦瓜 2 第二節、 苦瓜皂苷 2 一、化學結構 3 二、生合成途徑 5 三、生理活性 5 四、苦味皂苷 7 第三節、 生物轉換 9 一、葡萄醣苷酶(β-glucosidase) 9 二、酵母菌中的葡萄醣苷酶(β-glucosidase) 9 三、乳酸菌中的葡萄醣苷酶(β-glucosidase) 11 第四節、 苦瓜皂苷的提取 12 一、大孔吸附樹脂(Macroporous adsorption resins) 12 第五節、 苦瓜皂苷的分析方法 14 一、比色法 14 二、薄層層析法 14 三、高效能液相層析法(HPLC) 15 參、研究目的與實驗架構 17 肆、材料與方法 20 第一節、實驗材料 20 一、山苦瓜 20 二、酵母菌菌株 20 三、乳酸菌菌株 20 四、質體 21 三、微生物培養材料 22 第四節、實驗方法 25 一、苦瓜皂苷生物轉換及分析平台之建立 25 二、透過生物轉換苦瓜皂苷萃取物 29 伍、結果與討論 33 第一節、苦瓜皂苷生物轉換及分析平台之建立 33 一、以六種苦瓜皂苷標準品確立苦瓜皂苷分子離子類型 33 二、苦瓜皂苷的檢量線線性、方法檢量之偵測極限與定量極限 35 三、使用Diaion™ HP-20純化苦瓜皂苷甲醇萃取物 35 四、透過Tween 20增加苦瓜皂苷於培養基質中之溶解度 38 五、以固相萃取管純化苦瓜皂苷培養基質之回收率 43 第二節、以酵母菌Saccharomyces cerevisiae BY4741轉換苦瓜皂苷萃取物之探討 45 一、使用野生型酵母BY4741 WT進行苦瓜皂苷萃取物之發酵 45 二、使用單一基因剔除菌株進行苦瓜皂苷萃取物之發酵 51 三、使用Saccharomyces cerevisiae BY4741 WT發酵單一苦瓜皂苷 60 第三節、以乳酸菌Lactobacillus plantarum BCRC10069轉換苦瓜皂苷萃取物之探討 66 一、使用常見之植物性乳酸菌L. plantarum BCRC10069進行苦瓜皂苷萃取物汁發酵 66 二、乳酸菌β-葡萄醣苷酶(Bgl)蛋白表現及活性 72 三、以乳酸菌蛋白LpBgl進行苦瓜皂苷萃取液胞外發酵 79 四、使用Lactobacillus plantarum BCRC 10069發酵單一苦瓜皂苷 81 陸、結論與展望 87 柒、參考文獻 89 捌、附錄 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物轉換 | zh_TW |
| dc.subject | Lactobacillus plantarum | zh_TW |
| dc.subject | Saccharomyces cerevisiae | zh_TW |
| dc.subject | 苦味皂? | zh_TW |
| dc.subject | 苦瓜 | zh_TW |
| dc.subject | biotransformation | en |
| dc.subject | cucurbitane-type saponins | en |
| dc.subject | bitter taste | en |
| dc.subject | Saccharomyces cerevisiae | en |
| dc.subject | Lactobacillus plantarum | en |
| dc.subject | Momordica charantia | en |
| dc.title | 探討酵母菌與乳酸菌轉換苦瓜皂苷之影響 | zh_TW |
| dc.title | The effect of Saccharomyces cerevisiae and Lactobacillus plantarum BCRC 10069 biotransformation on saponins of Momordica charantai L. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂廷璋,陳勁初,廖家慶,黃學聰,王如邦 | |
| dc.subject.keyword | 苦瓜,苦味皂?,Saccharomyces cerevisiae,Lactobacillus plantarum,生物轉換, | zh_TW |
| dc.subject.keyword | Momordica charantia,cucurbitane-type saponins,bitter taste,Saccharomyces cerevisiae,Lactobacillus plantarum,biotransformation, | en |
| dc.relation.page | 138 | |
| dc.identifier.doi | 10.6342/NTU201801347 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
