Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立虹
dc.contributor.authorChia-Lin Sunen
dc.contributor.author孫嘉璘zh_TW
dc.date.accessioned2021-05-17T09:21:18Z-
dc.date.available2013-03-19
dc.date.available2021-05-17T09:21:18Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-13
dc.identifier.citationAkagi, J., 1995, Respiratory sulfate reduction: Biotechnology Handbooks, v. 8, p. 89-89.
Berner, R.A., 1989, Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 75, p. 97-122.
Bradley, A., Leavitt, W., and Johnston, D., 2011, Revisiting the dissimilatory sulfate reduction pathway: Geobiology, v. 9, p. 446-457.
Brandt, K., Vester, F., Jensen, A., and Ingvorsen, K., 2001, Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA): Microbial Ecology, v. 41, p. 1-11.
Brunner, B., Bernasconi, S.M., Kleikemper, J., and Schroth, M.H., 2005, A model for oxygen and sulfur fractionation in sulfate during bacterial sulfate reduction processes: Geochimica et Cosmochimica Acta, v. 69, p. 4773-4785.
Canfield, D.E., 2001a, Biogeochemistry of sulfur isotopes: Reviews in Mineralogy and Geochemistry, v. 43, p. 607-636.
Canfield, D.E., 2001b, Isotope fractionation by natural populations of sulfate-reducing bacteria: Geochimica et Cosmochimica Acta, v. 65, p. 1117-1124.
Canfield, D.E., 2004, The evolution of the Earth surface sulfur reservoir: American Journal of Science, v. 304, p. 839-861.
Canfield, D.E., Olesen, C.A., and Cox, R.P., 2006, Temperature and its control of isotope fractionation by a sulfate-reducing bacterium: Geochimica et Cosmochimica Acta, v. 70, p. 548-561.
Canfield, D.E., and Teske, A., 1996, Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies: Nature, v. 382, p. 127-132.
Canfield, D.E., and Thamdrup, B., 1994, The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur: Science, v. 266, p. 1973-1975.
Cypionka, H., 1995, Solute transport and cell energetics: Biotechnology Handbooks, v. 8, p. 151-184.
Detmers, J., Bruchert, V., Habicht, K.S., and Kuever, J., 2001, Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes: Applied and Environmental Microbiology, v. 67, p. 888-894.
Farquhar, J., Canfield, D.E., Masterson, A., Bao, H., and Johnston, D., 2008, Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Fallestrand, Denmark: Geochimica et Cosmochimica Acta, v. 72, p. 2805-2821.
Farquhar, J., Johnston, D.T., Wing, B.A., Habicht, K.S., Canfield, D.E., Airieau, S., and Thiemens, M.H., 2003, Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record: Geobiology, v. 1, p. 27-36.
Farquhar, J., and Wing, B.A., 2003, Multiple sulfur isotopes and the evolution of the atmosphere: Earth and Planetary Science Letters, v. 213, p. 1-13.
Gall, J.L., 1963, A new species of Desulfovibrio: Journal of Bacteriology, v. 86, p. 1120.
Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., and Canfield, D.E., 2002, Calibration of sulfate levels in the Archean ocean: Science, v. 298, p. 2372-2374.
Harrison, A., and Thode, H., 1958, Mechanism of the bacterial reduction of sulphate from isotope fractionation studies: Transactions of the Faraday Society, v. 54, p. 84-92.
Hoek, J., and Canfield, D.E., 2008, Controls on isotope fractionation during dissimilatory sulfate reduction: Microbial sulfur metabolism. Springer, New York, p. 273-284.
Hoek, J., Reysenbach, A.L., Habicht, K.S., and Canfield, D.E., 2006, Effect of hydrogen limitation and temperature on the fractionation of sulfur isotopes by a deep-sea hydrothermal vent sulfate-reducing bacterium: Geochimica et Cosmochimica Acta, v. 70, p. 5831-5841.
Holland, M.M., Bitz, C.M., and Tremblay, B., 2006, Future abrupt reductions in the summer Arctic sea ice: Geophysical Research Letters, v. 33, L23503
Jorgensen, B., and Fenchel, T., 1974, The sulfur cycle of a marine sediment model system: Marine Biology, v. 24, p. 189-201.
Jorgensen, B.B., 1982, Mineralization of organic matter in the sea bed—the role of sulphate reduction: Nature, v. 296, p. 643-645.
Jorgensen, B.B., Isaksen, M.F., and Jannasch, H.W., 1992, Bacterial sulfate reduction above 100 oC in deep-sea hydrothermal vent sediments: Science, v. 258, p. 1756-1757.
Johnston, D.T., Farquhar, J., and Canfield, D.E., 2007, Sulfur isotope insights into microbial sulfate reduction: When microbes meet models: Geochimica et Cosmochimica Acta, v. 71, p. 3929-3947.
Johnston, D.T., Farquhar, J., Wing, B.A., Kaufman, A.J., Canfield, D.E., and Habicht, K.S., 2005, Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators: American Journal of Science, v. 305, p. 645-660.
Kaplan, I., and Rittenberg, S., 1964, Microbiological fractionation of sulphur isotopes: Journal of General Microbiology, v. 34, p. 195-212.
Laanbroek, H.J., Abee, T., and Voogd, I.L., 1982, Alcohol conversion by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen: Archives of Microbiology, v. 133, p. 178-184.
McCready, R., 1975, Sulphur isotope fractionation by Desulfovibrio and Desulfotomaculum species: Geochimica et Cosmochimica Acta, v. 39, p. 1395-1401.
Mitchell, K., Heyer, A., Canfield, D.E., Hoek, J., and Habicht, K.S., 2009, Temperature effect on the sulfur isotope fractionation during sulfate reduction by two strains of the hyperthermophilic Archaeoglobus fulgidus: Environmental Microbiology, v. 11, p. 2998-3006.
Rabus, R., Hansen, T.A., and Widdel, F., 2006, Dissimilatory sulfate-and sulfur-reducing prokaryotes: The prokaryotes, v. 2, p. 659-768.
Rees, C.E., 1973, Steady-state model for sulfur isotope fractionation bacterial reduction processes. Geochimica et Cosmochimica Acta, v. 37(5), p. 1141-1162.
Rudnicki, M.D., Elderfield, H., and Spiro, B., 2001, Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures: Geochimica et Cosmochimica Acta, v. 65, p. 777-789.
Scherer, S., and Neuhaus, K., 2006, Life at low temperatures: The prokaryotes, v. 2, p. 210-262.
Shen, Y., Buick, R., and Canfield, D.E., 2001, Isotopic evidence for microbial sulphate reduction in the early Archaean era: Nature, v. 410, p. 77-81.
Sim, M.S., Bosak, T., and Ono, S., 2011, Large sulfur isotope fractionation does not require disproportionation: Science, v. 333, p. 74-77.
Sim, M.S., Ono, S., Donovan, K., Templer, S.P., and Bosak, T., 2011, Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp: Geochimica et Cosmochimica Acta, v. 75, p. 4244-4259
Thode, H., Kleerekoper, H., and Mcelcheran, D., 1951, Isotope fractionation in the bacterial reduction of sulphate: Research, v. 4, p. 581-582.
Thode, H., Monster, J., and Dunford, H., 1961, Sulphur isotope geochemistry: Geochimica et Cosmochimica Acta, v. 25, p. 159-174.
Zeikus, J., Dawson, M., Thompson, T., Ingvorsen, K., and Hatchikian, E., 1983, Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov: Journal of General Microbiology, v. 129, p. 1159-1169.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6923-
dc.description.abstract硫酸還原菌會將海水中硫酸鹽還原成硫化氫,最終形成黃鐵礦被保存在沈積物中,而硫酸鹽還原過程中同時伴隨有機物的氧化分解,因此硫酸還原作用被視為影響碳-硫-鐵循環的重要過程之一。由於硫酸還原菌所進行的硫酸還原作用造成硫同位素的分化,且分化程度與環境因子有關,因此地質記錄中硫酸鹽類礦物沈澱與沈積型黃鐵礦的硫同位素成份可提供重要的地球環境變動訊息。
硫酸還原菌造成硫同位素分化程度差異的原因仍然不清楚,可能與物種差異和細胞硫酸鹽還原速率有關,或是受到溫度、硫酸鹽濃度和電子供應者等因素所影響。為解釋複雜的分化情形,前人提出細胞內部代謝步驟的概念模型,並加入質量流的計算,用以推估微生物代謝過程對硫同位素分化程度的影響,其中硫酸鹽進出細胞的通量與細胞內部硫酸鹽轉換的通量是影響硫同位素分化程度的重要因子。
本研究利用培養嗜熱菌 Thermodesulfobacterium commune 接近株與嗜溫菌 Desulfovibrio gigas 探討溫度如何影響硫酸還原菌的生理代謝,並進而影響硫同位素的分化程度。Thermodesulfobacterium commune 接近株的培養溫度範圍為 34-79 oC,最適生長溫度為 72 oC,而最高細胞硫酸還原速率發生在 77 oC,其同位素分化範圍在8.2-31.6 ‰ 之間,在大多數培養溫度下硫同位素分化在8.2-18.9 ‰ 之間上下變動,僅在68 oC出現一高值。Desulfovibrio gigas 的培養溫度範圍為 10-41 oC,最適生長溫度為33 oC,而最高細胞還原速率發生在41 oC,其同位素分化範圍在 10.3-29.7 ‰ 之間,最大分化程度出現在最高溫以及最低溫的培養,而最小分化程度則出現在中間溫度。兩菌株所產生的分化範圍與前人研究相近,但與同種屬菌株相比則其最大分化皆大於前人研究結果,顯然菌株培養的條件不同便會造成同位素分化程度的不同。此外,此二菌株之分化程度隨溫度的變化趨勢並不相同,其變化並不符合前人根據細胞生理特性隨溫度變化之理論分化模型。將多重硫同位素分析結果與前人模式所建立的多重硫同位素分化網格比較,顯示該網格並無法包絡本研究的分析結果,表示前人模式所建立的多重硫同位素分化網格仍須重新檢討。
綜合上述討論可知,微生物硫酸鹽還原作用造成的硫同位素分化程度雖已有各種實驗觀察和模型加以解釋,但仍有諸多不一致的分析結果,其中溫度雖為單一環境因子,但對菌株的生理學特性可能並無系統性的影響,也因此難以預測其造成硫同位素分化的程度變化。未來若能結合不同菌株之生理學特性對於環境因子的反應與多重硫同位素分析,將可更進一步探討硫同位素分化程度與硫酸還原菌之特定生長條件之間的關係。
zh_TW
dc.description.abstractMicrobial sulfate reduction is a major mechanism driving anaerobic mineralization of organic matter in global ocean. While sulfate-reducing prokaryotes are well known to fractionate sulfur isotopes during dissimilatory sulfate reduction, unraveling the isotopic composition of sulfur-bearing minerals preserved in sedimentary records could provide invaluable constraints on the evolution of seawater chemistry and metabolic pathways. Variations in sulfur isotope fractionations are partly due to inherent differences among species and also affected by environmental conditions (e.g. sulfate abundance and temperature). Sulfur isotope fractionations caused by microbial sulfate reduction have been interpreted to be caused by a sequence of enzyme-catalyzed kinetic isotope fractionation steps. The fractionation factor mainly depends on (1) the sulfate flux into and out of the cell, and (2) the flux of sulfur compound transformation between the internal pools.
This study examined the multiple sulfur isotope fractionation patterns catalyzed by a thermophilic Thermodesulfobacterium-related strain and a mesophilic Desulfovibrio gigas over a wide temperature range. The Thermodesulfobacterium-related strain grew between 34 and 79 oC with an optimal temperature at 72 oC and the highest cell-specific sulfate reduction rate at 77 oC. The isotope fractionation (ε34Ssulfate-sulfide) ranges between 8.2 and 31.6‰ with a maximum at 68 oC. The D. gigas grew between 10 and 45 oC with an optimal temperature at 30 oC and the highest cell-specific sulfate reduction rate at 41 oC. The isotope fractionation ranges between 10.3 and 29.7 ‰ with higher fractionations at both lower and higher temperatures. The isotope fractionation causing by these two strains is similar to previous reports, but the maximum fractionation is greater than that by the same species. Apparently, the differences in growth conditions may cause the different isotope fractionation. In addition, the change of fractionation with temperature is different for the two strains and cannot be predicted by a standard model considering physiological characteristics of cells. The result of multiple sulfur isotope measurements in this study cannot be described by a sulfate reduction network, which calculated the Δ33S and δ34S values by assuming the equilibrium fractionation among internal steps. Indeed, the sulfate reduction network has to be reevaluated.
Although there are many experiments and several models to study the sulfur isotope fractionation by microbial sulfate reduction, but the result is not conclusive. Temperature is one of the most important environmental factors, but it may not make systemic influence on the physiology of strains and also the isotope fractionation. Further studies regarding physiological responses to environmental factors with the multiple sulfur isotope analysis may probably offer a linkage between sulfate isotope fractionation and growth conditions by sulfate reducing microorganisms.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:21:18Z (GMT). No. of bitstreams: 1
ntu-101-R98224207-1.pdf: 2555473 bytes, checksum: ccc2b16674bf4d9bc3673dd43d3efb4c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xi
附表目錄 xii
第一章 緒論 1
1.1硫的地球化學特性 1
1.2海洋環境中硫循環與硫酸鹽異化還原作用 1
1.3硫同位素之地質記錄與其重要性 3
1.4 硫酸還原菌造成硫同位素分化程度與其影響因素 5
1.4.1硫酸鹽濃度與硫酸鹽還原速率 5
1.4.2電子供應者 6
1.4.3溫度 6
1.5多重硫同位素分化係數 7
1.6硫酸鹽異化還原作用與其分化模型 9
1.6.1 Rees 模型 10
1.6.2 Farquhar 模型 10
1.6.3 Brunner and Bernasconi 模型 12
1.7研究動機與目的 13
第二章 研究方法 14
2.1培養條件 14
2.2溫度梯度反應槽 (thermal gradient block) 15
2.3細胞觀察 16
2.3.1血球計數盤 (counting chamber) 17
2.3.2分光光度計 (spectrophotometer) 17
2.4硫酸鹽濃度測量 18
2.5同位素分析樣本之前處理 18
2.5.1硫酸鋇樣本 18
2.5.2硫化銀轉換 19
2.6氣相同位素比值質譜儀 21
2.7多重硫同位素分析與操作 22
2.8計算使用公式 23
2.8.1細胞硫酸鹽還原速率 (cell-specific sulfate reduction rate) 23
2.8.2細胞生長速率 (specific growth rate) 23
2.8.3硫同位素分化計算 23
第三章 結果 24
3.1細胞濃度與硫酸鹽濃度變化 24
3.2 細胞生長速率與細胞硫酸鹽還原速率 37
3.3硫同位素分化 39
第四章 討論 42
4.1 細胞生理特性與溫度的關係 42
4.2 硫同位素分化與前人研究比較 42
4.3 細胞硫酸鹽還原速率與硫同位素分化的關係 43
4.4溫度與硫同位素分化的關係 45
4.5 硫酸鹽還原作用之多重硫同位素分化模型 47
4.5.1多重硫同位素分化網格計算方法 47
4.5.2 多重硫同位素分化網格的限制 50
4.5.3 多重硫同位素分化網格的擴充 54
4.6 利用多重硫同位素分化網格探討細胞新陳代謝之質量流 63
4.7 相關研究與未來工作 67
第五章 結論 68
參考文獻 69
附錄 72
dc.language.isozh-TW
dc.title溫度調控微生物硫酸還原作用之硫同位素分化研究:以Thermodesulfobacterium與Desulfovibrio菌株為例zh_TW
dc.titleTemperature controls of the sulfur isotope fractionation during sulfate reduction by Thermodesulfobacterium and Desulfovibrio strainsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.coadvisor王珮玲
dc.contributor.oralexamcommittee林曉武,朱美妃
dc.subject.keyword硫酸還原菌,硫同位素分化,生長溫度,zh_TW
dc.subject.keywordmicrobial sulfate reduction,sulfur isotope fractionation,growth temperature,en
dc.relation.page90
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved